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(5",[9]) the conformal round sphere
(H"*', g) the hyperbolic space
(B"1(0; 1), 9) the unit ball

1= Ix)?

p(x) = = is such that g = p’g restricts as

Isom(H”“) = Conf(5")
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(N, [g]) conformal manifold

(M, g ) Riemannian manifold

M = MU N compact manifold with boundary
oM =N

p: M — [0, 00) defining function for N

_dp®dp+7+o0(p)
g - p2
(equivalently, g = p’g restricts to § on N)

(M, g ) is a conformal compactification
(N, [9]) is the conformal boundary

Riemannian invariants = conformal invariants
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Answer
Bahuaud-Gicquaud-Lee-Marsh 10's: yes if

- existence of a convex core

| - IR — RO, [VPRls = O(e~")
- N // —d -
(M. g) (N, [4]) - r=ds(,0)

Question: Is the notion of asymptotically hyperbolic manifold intrinsic?
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- sec(P) = -1 <= P=JP Ric(g) = — (7 n 1) g
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Complex hyperbolic space (CH"*", g,))

Unique complete, simply connected, Kédhler manifold whose holomorphic sectional curvature is
constant equal to —1

Metric
0 standard contact form on S*"*" ¢ ¢
g = dr @ dr + 4sinh’(r)0 ® 0 + 4sinh?®(r/2)y 1
0p(v) = 5{v,p)
_dp®dp+0®0+ py+0(p) ~ associated Levi form
= P

A,'p(u7 V) = d()p|ker (I(U, IV)
7

with p = e~
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Complex hyperbolic space (CH"*", g,))

CR manifold Strictly pseudoconvex if
(N, H,Jx) with - H contact
- H hyperplane distribution - 30 calibrating H with d6|xer o (-, J1i-) > O

- Ji formally integrable almost complex
structure on H

Isom(CH"™") = Autcr(S™""")

Intrinsic geometry of (CH""',g,/) = CR geometry of 52"+
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(N, H,J1) CR manifold

(M, g,)) (almost) Hermitian / Kahler manifold
M = MU N compact manifold with boundary
OM =N

p: M — [0, c0) defining function for N

5= dp@dp+0®60+ py+0(p)

& pz
Y g is asymptotically complex hyperbolic and
22 ) asymptotic to the CR structure
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(almost) Hermitian / Kahler invariants = CR invariants
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sec’(g) = =1+ 0(1)
sect(g) =~ +o()

Ric(g) = — (g + 1) g+ 0o(1)

\ Examples:
> ! Cheng-Yau metric, Bergman metric

(Mvgvj) (N7H7j”) =7
Roth "99, Biquard '00, Matsumoto '20:

perturbation of Kahler-Einstein metrics
—> new examples of Einstein metrics
(CR structure not necessarily integrable here)

Question: Is the notion of asymptotically complex hyperbolic manifold intrinsic?
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Theorem [P. 22 -'23]
Let (M, g,J) be a complete, non-compact, almost Hermitian manifold of real dimension > 4, with a
convex core. Assume that

IR—R’lg, [Vilg, [VRlg, [Vlg=0(""), a>1
Then (M, )) is the interior of a compact almost complex manifold (M, ) with boundary such that

- Jis continuous up to the boundary - Jo = J|4, is of class C", formally integrable
* Ho = (TOM) N (JTOM) is a contact - (OM, Ho, Jo) is CR strictly pseudoconvex
distribution of class C’
Moreover, g is asymptotically complex hyperbolic: there exist p defining function, " a €' contact
form on OM, such that
g= do®dp+ 1’ @1’ + py + 0(p’?)
Pz
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- assumptions not totally geometric

- |R —R%g4 = O(e™") a posteriori

- dimM = 4, g Einstein: only applies to
spherical boundaries (consequence of
Biquard-Herzlich '05)

P.'21-'23
- a>3/2 = C"everywhere

- g Kahler = assumptions on J are
superfluous

Bracci-Gaussier-Zimmer "18:

Q ¢ C" bounded domain, 99 of class C*“
00 strictly pseudoconvex if and only if

Q carries a complete Kahler metric with

—1—€<sech<—1—|—6

near 092
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Kahler case: Vj,J0r = 0

Admissible frame: {9,)9;, ki, ..., Exn} orthonormal frame with Vg, Ej = 0

Associated coframes Almost contact tensors
0 =e & g(-Jor) pr =& (m"o)or)
o —r/2pox ] .
r=e e ) where mt: TM\ K — {8r,J0;}* orthogonal

Associated Carnot metrics projection

2n
Y= me
j=1

2r 0

g=drdr+e’n, ®71ﬁJ +éey
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Kahler case: V,J0, =0

Strategy
< {n’,...,n"} locally converges in C" topology
- The limit {»°,..., 7"} is a coframe

- 1% is contact

Relations
o =-Id+7n ® &
r/S opr=20
vlpryor) =
dn? (- o) = v + 0(el' =)

-, converges in C' topology
- The limit ¢ induces an almost complex

structure Jo on ker 1’

- Jo is formally integrable and

d770|ker7]V('7jO') =7

with &) = &7 (€'Ja,)



Kahler case: V,J0r = 0

Convergence of the coframes

*nd +20m) = Zi”:o 0 (e(1/2—a)r) 0t
827/r + 8f7/r = Ziio (0] (e(1/2—u)f) U,t\’
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Pt o —smol@n) (e (e ion) 7 (1) o (s
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Kahler case: V,J0, =0

Convergence of the coframes
&’ +20m° =32, 0 (8(1/2—a)r) ot

Pn+ 81 = Zilo 0 (6(1/2_”)') nf

Convergence of ¢,

Oror=proS —Sropr =0 (9(3/2—0))

{

7 (e"Lu(1(v))) — €"Le (17(v))
& (e2Lu(11(v)) — €72L: (1(v))

S = E7(S), S = Vo,
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Convergence of ¢,

Opr=00S —S0p =0 (e(3/2—a)) Sr=&(5),S=Vor

ol=-Id+n'®& = Jo= @|ker o 1S @n almost complex structure

C' convergence of o, integrability of Jo,...



Kahler case: Vj,J0r = 0

Convergence of the coframes

& +20m = i, 0 (/27 ) ot O (€ Lulf (V) — €L (n(v))  =0(et)
&+ B =33, 0 (€027 ) 08 (e2Lu(ni(v))) — €72L; (n(v)) =0 (e0rr)

Convergence of ¢,

8@2 = @ro Sr - Sr o Yr = O (9(3/2—0)) S’ = gf (S)v S= Va’

ol=-Id+n'®& = Jo= @|ker o 1S @n almost complex structure

C' convergence of ¢, integrability of J,..: too long
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Non-Kahler case: Vy,JO, # 0 ..but = 0(e~*)

Key fact

There exists a unique vector field o on M\ K such that
* [Eo —JOr|g = o(1)
- Vo Eo=0

Same strategy, but

- replace JO; by Eq almost everywhere
- large amount of extra estimates

- extra error terms in all equations must be understood



Tack sa mycket!



