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(Sn, [ĝ]) the conformal round sphere

(Hn+1, g) the hyperbolic space

(Bn+1(0; 1), g) the unit ball

ρ(x) = 1−|x|2
2 is such that g = ρ2g restricts as ĝ on Sn

Isom(Hn+1) = Conf(Sn)



[Fefferman-Graham ’85]

(N, [ĝ])

(M, g)

(N, [ĝ]) conformal manifold

(M, g ) Riemannian manifold
M = M ∪ N compact manifold with boundary
∂M = N
ρ : M→ [0,∞) defining function for N

g =
dρ⊗ dρ+ ĝ+ o(ρ)

ρ2

(equivalently, g = ρ2g restricts to ĝ on N)

(M, g ) is a conformal compactification
(N, [ĝ]) is the conformal boundary

Riemannian invariants =⇒ conformal invariants
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(N, [ĝ]) is the conformal boundary

Riemannian invariants =⇒ conformal invariants



[Fefferman-Graham ’85]
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(N, [ĝ])(M, g)

Sectional curvature

sec(g) = −|dρ|2g + o(1)

(Mn+1, g) is called

• asymptotically hyperbolic if |dρ|2g = 1 on N

• Poincaré-Einstein if moreover Ric(g) = −ng

Graham-Lee ’91, Biquard ’00, Lee ’06: perturbation
of Poincaré-Einstein metrics
=⇒ new examples of Einstein metrics

Question: Is the notion of asymptotically hyperbolic manifold intrinsic?
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(N, [ĝ])(M, g)

Sectional curvature

sec(g) = −|dρ|2g + o(1)

(Mn+1, g) is called

• asymptotically hyperbolic if |dρ|2g = 1 on N

• Poincaré-Einstein if moreover Ric(g) = −ng

Graham-Lee ’91, Biquard ’00, Lee ’06: perturbation
of Poincaré-Einstein metrics
=⇒ new examples of Einstein metrics

Question: Is the notion of asymptotically hyperbolic manifold intrinsic?
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(N, [ĝ])(M, g)

Answer

Bahuaud-Gicquaud-Lee-Marsh 10’s: yes if

• existence of a convex core

• |R− R0|g, |∇jR|g = O(e−ar)

R0(X, Y)Z = g(Y, Z)X − g(X, Z)Y
r = dg(·, o)

Question: Is the notion of asymptotically hyperbolic manifold intrinsic?
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Complex hyperbolic space (CHn+1,g, J)

Unique complete, simply connected, Kähler manifold whose holomorphic sectional curvature is
constant equal to −1

Curvatures

R0(X, Y)Z =
1
4
(
g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX − g(JX, Z)JY + 2g(X, JY)JZ

)
−1 6 sec(P) 6 − 1

4

• sec(P) = −1 ⇐⇒ P = JP

• sec(P) = − 1
4 ⇐⇒ P ⊥ JP

Ric(g) = −
(n
2 + 1

)
g
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Complex hyperbolic space (CHn+1,g, J)
Unique complete, simply connected, Kähler manifold whose holomorphic sectional curvature is
constant equal to −1

Metric

g = dr ⊗ dr + 4 sinh2(r)θ ⊗ θ + 4 sinh2(r/2)γ

=
dρ⊗ dρ+ θ ⊗ θ + ργ + o(ρ)

ρ2

with ρ = e−r

θ standard contact form on S2n+1 ⊂ Cn+1

θp(v) =
1
2 〈v, ip〉

γ associated Levi form

γp(u, v) = dθp|ker θ(u, iv)
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Complex hyperbolic space (CHn+1,g, J)

CR manifold
(N,H, JH) with

• H hyperplane distribution

• JH formally integrable almost complex
structure on H

Strictly pseudoconvex if

• H contact

• ∃θ calibrating H with dθ|ker θ(·, JH·) > 0

Isom(CHn+1) = AutCR(S2n+1)

Intrinsic geometry of (CHn+1,g, J) =⇒ CR geometry of S2n+1
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(N,H, JH)(M, g, J)

(N,H, JH) CR manifold
(M, g, J) (almost) Hermitian / Kähler manifold
M = M ∪ N compact manifold with boundary
∂M = N
ρ : M→ [0,∞) defining function for N

g =
dρ⊗ dρ+ θ ⊗ θ + ργ + o(ρ)

ρ2

g is asymptotically complex hyperbolic and
asymptotic to the CR structure

(almost) Hermitian / Kähler invariants =⇒ CR invariants
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(N,H, JH)(M, g, J)

sech(g) = −1+ o(1)

sec⊥(g) = − 1
4 + o(1)

Ric(g) = −
(n
2 + 1

)
g+ o(1)

Examples:
Cheng-Yau metric, Bergman metric

Roth ’99, Biquard ’00, Matsumoto ’20:
perturbation of Kähler-Einstein metrics
=⇒ new examples of Einstein metrics
(CR structure not necessarily integrable here)

Question: Is the notion of asymptotically complex hyperbolic manifold intrinsic?
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(M, g, J) Hermitian: J2 = −Id and g(J·, J·) = g

Theorem [P. ’22 –’23]
Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension > 4, with a
convex core. Assume that

|R− R0|g, |∇J|g, |∇R|g, |∇2J|g = O(e−ar), a > 1

Then (M, J) is the interior of a compact almost complex manifold (M, J) with boundary such that

• J is continuous up to the boundary

• H0 =
(
T∂M

)
∩
(
JT∂M

)
is a contact

distribution of class C1

• J0 = J|H0 is of class C1, formally integrable

• (∂M,H0, J0) is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η0 a C1 contact
form on ∂M, such that

g =
dρ⊗ dρ+ η0 ⊗ η0 + ργ + o(ρ3/2)

ρ2



(M, g, J) Hermitian: J2 = −Id and g(J·, J·) = g

Theorem [P. ’22 –’23]
Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension > 4, with a
convex core. Assume that

|R− R0|g, |∇J|g, |∇R|g, |∇2J|g = O(e−ar), a > 1

Then (M, J) is the interior of a compact almost complex manifold (M, J) with boundary such that

• J is continuous up to the boundary

• H0 =
(
T∂M

)
∩
(
JT∂M

)
is a contact

distribution of class C1

• J0 = J|H0 is of class C1, formally integrable

• (∂M,H0, J0) is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η0 a C1 contact
form on ∂M, such that

g =
dρ⊗ dρ+ η0 ⊗ η0 + ργ + o(ρ3/2)

ρ2



(M, g, J) Hermitian: J2 = −Id and g(J·, J·) = g

Theorem [P. ’22 –’23]
Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension > 4, with a
convex core. Assume that

|R− R0|g, |∇J|g, |∇R|g, |∇2J|g = O(e−ar), a > 1

Then (M, J) is the interior of a compact almost complex manifold (M, J) with boundary such that

• J is continuous up to the boundary

• H0 =
(
T∂M

)
∩
(
JT∂M

)
is a contact

distribution of class C1

• J0 = J|H0 is of class C1, formally integrable

• (∂M,H0, J0) is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η0 a C1 contact
form on ∂M, such that

g =
dρ⊗ dρ+ η0 ⊗ η0 + ργ + o(ρ3/2)

ρ2



(M, g, J) Hermitian: J2 = −Id and g(J·, J·) = g

Theorem [P. ’22 –’23]
Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension > 4, with a
convex core. Assume that

|R− R0|g, |∇J|g, |∇R|g, |∇2J|g = O(e−ar), a > 1

Then (M, J) is the interior of a compact almost complex manifold (M, J) with boundary such that

• J is continuous up to the boundary

• H0 =
(
T∂M

)
∩
(
JT∂M

)
is a contact

distribution of class C1

• J0 = J|H0 is of class C1, formally integrable

• (∂M,H0, J0) is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η0 a C1 contact
form on ∂M, such that

g =
dρ⊗ dρ+ η0 ⊗ η0 + ργ + o(ρ3/2)

ρ2



(M, g, J) Hermitian: J2 = −Id and g(J·, J·) = g

Theorem [P. ’22 –’23]
Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension > 4, with a
convex core. Assume that

|R− R0|g, |∇J|g, |∇R|g, |∇2J|g = O(e−ar), a > 1

Then (M, J) is the interior of a compact almost complex manifold (M, J) with boundary such that

• J is continuous up to the boundary

• H0 =
(
T∂M

)
∩
(
JT∂M

)
is a contact

distribution of class C1

• J0 = J|H0 is of class C1, formally integrable

• (∂M,H0, J0) is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η0 a C1 contact
form on ∂M, such that

g =
dρ⊗ dρ+ η0 ⊗ η0 + ργ + o(ρ3/2)

ρ2



(M, g, J) Hermitian: J2 = −Id and g(J·, J·) = g

Theorem [P. ’22 –’23]
Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension > 4, with a
convex core. Assume that

|R− R0|g, |∇J|g, |∇R|g, |∇2J|g = O(e−ar), a > 1

Then (M, J) is the interior of a compact almost complex manifold (M, J) with boundary such that

• J is continuous up to the boundary

• H0 =
(
T∂M

)
∩
(
JT∂M

)
is a contact

distribution of class C1

• J0 = J|H0 is of class C1, formally integrable

• (∂M,H0, J0) is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η0 a C1 contact
form on ∂M, such that

g =
dρ⊗ dρ+ η0 ⊗ η0 + ργ + o(ρ3/2)

ρ2



(M, g, J) Hermitian: J2 = −Id and g(J·, J·) = g

Theorem [P. ’22 –’23]
Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension > 4, with a
convex core. Assume that

|R− R0|g, |∇J|g, |∇R|g, |∇2J|g = O(e−ar), a > 1

Then (M, J) is the interior of a compact almost complex manifold (M, J) with boundary such that

• J is continuous up to the boundary

• H0 =
(
T∂M

)
∩
(
JT∂M

)
is a contact

distribution of class C1

• J0 = J|H0 is of class C1, formally integrable

• (∂M,H0, J0) is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η0 a C1 contact
form on ∂M, such that

g =
dρ⊗ dρ+ η0 ⊗ η0 + ργ + o(ρ3/2)

ρ2



(M, g, J) Hermitian: J2 = −Id and g(J·, J·) = g

Theorem [P. ’22 –’23]
Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension > 4, with a
convex core. Assume that

|R− R0|g, |∇J|g, |∇R|g, |∇2J|g = O(e−ar), a > 1

Then (M, J) is the interior of a compact almost complex manifold (M, J) with boundary such that

• J is continuous up to the boundary

• H0 =
(
T∂M

)
∩
(
JT∂M

)
is a contact

distribution of class C1

• J0 = J|H0 is of class C1, formally integrable

• (∂M,H0, J0) is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η0 a C1 contact
form on ∂M, such that

g =
dρ⊗ dρ+ η0 ⊗ η0 + ργ + o(ρ3/2)

ρ2



Comments
Bland 80’s:
Compactification for some open Kähler manifolds

• assumptions not totally geometric

• |R− R0|g = O(e−4r) a posteriori

• dimM = 4, g Einstein: only applies to
spherical boundaries (consequence of
Biquard-Herzlich ’05)

P. ’21-’23

• a > 3/2 =⇒ C1 everywhere

• g Kähler =⇒ assumptions on J are
superfluous

Bracci-Gaussier-Zimmer ’18:
Ω ⊂ Cn bounded domain, ∂Ω of class C2,α

∂Ω strictly pseudoconvex if and only if
Ω carries a complete Kähler metric with

−1− ε 6 sech 6 −1+ ε

near ∂Ω
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J∂r
∂r

J∂r
∂r

J∂r

K

∂K

Convex core

• K compact, codim = 0

• ∂K smooth, orientable

• sec(M \ K) < 0

Normal exponential map

E : (0,∞)× ∂K ∼→ M \ K

E(r, p) = Er(p) := expp(rν(p))

Intrinsic data

• Radial vector field ∂r

• J∂r
• {∂r, J∂r}⊥
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Kähler case: ∇∂r J∂r = 0

Admissible frame: {∂r, J∂r, E1, . . . , E2n} orthonormal frame with ∇∂rEj = 0

Associated coframes

η0r = e−rE∗
r g(·, J∂r)

ηjr = e−r/2E∗
r g(·, Ej)

Associated Carnot metrics

γr =
2n∑
j=1

ηjr ⊗ ηjr

Almost contact tensors

ϕr = E∗
r (π

⊥ ◦ J ◦ π⊥)

where π⊥ : TM \ K → {∂r, J∂r}⊥ orthogonal
projection

g = dr ⊗ dr + e2rη0r ⊗ η0r + erγr
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Kähler case: ∇∂r J∂r = 0

Strategy

• {η0r , . . . , η2nr } locally converges in C1 topology

• The limit {η0, . . . , η2n} is a coframe

• η0 is contact

• ϕr converges in C1 topology

• The limit ϕ induces an almost complex
structure J0 on ker η0

• J0 is formally integrable and
dη0|ker η0(·, J0·) = γ

Relations

ϕr
2 = −Id + η0r ⊗ ξr0 with ξr0 = E∗

r (erJ∂r)

η0r ◦ ϕr = 0

γr(ϕr·, ϕr·) = γr

dη0r (·, ϕr·) = γr + O(e(1−a)r)
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Kähler case: ∇∂r J∂r = 0

Convergence of the coframes

∂2η0r + 2∂rη0r =
∑2n

k=0 O
(
e(1/2−a)r

)
ηkr

∂2ηjr + ∂rη
j
r =

∑2n
k=0 O

(
e(1/2−a)r

)
ηkr

∂2r
(
erLu(η

0
r (v))

)
− erLr

(
η0r (v)

)
= O

(
e(2−a)r

)
∂2r

(
er/2Lu(η

j
r(v))

)
− er/2Lr

(
ηjr(v)

)
= O

(
e(3/2−a)r

)

Convergence of ϕr

∂rϕr = ϕr ◦ Sr − Sr ◦ ϕr = O
(
e(3/2−a)

) Sr = E∗
r (S), S = ∇∂r

ϕr
2 = −Id + η0r ⊗ ξr0 =⇒ J0 = ϕ|ker η0 is an almost complex structure

C1 convergence of ϕr , integrability of J0,…: too long
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Non-Kähler case: ∇∂r J∂r 6= 0

…but = O(e−ar)

Key fact

There exists a unique vector field E0 on M \ K such that

• |E0 − J∂r|g = o(1)

• ∇∂rE0 = 0

Same strategy, but

• replace J∂r by E0 almost everywhere

• large amount of extra estimates

• extra error terms in all equations must be understood
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Tack så mycket!


