CR compactification for asymptotically locally complex hyperbolic almost Hermitian manifolds

[arXiv:2307.04062]

Einstein Spaces and Special Geometry – Mittag-Leffler Institute

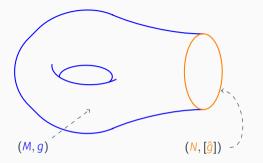
Alan Pinoy July 12, 2023

KTH Royal Institute of Technology Stockholm

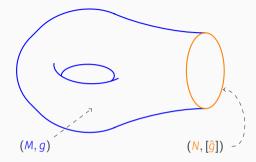
 $(S^{n}, [\hat{g}])$ the conformal round sphere (\mathbb{H}^{n+1}, g) the hyperbolic space $(\overline{B^{n+1}(0; 1)}, \overline{g})$ the unit ball $\rho(x) = \frac{1-|x|^{2}}{2}$ is such that $\overline{g} = \rho^{2}g$ restricts as \hat{g} on S^{n}

$$\operatorname{Isom}(\mathbb{H}^{n+1}) = \operatorname{Conf}(S^n)$$

(*N*, [ĝ]) conformal manifold



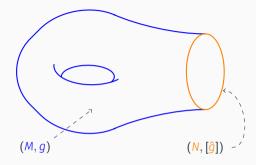
 $(N, [\hat{g}])$ conformal manifold (M, g) Riemannian manifold



 $(N, [\hat{g}])$ conformal manifold (M, g) Riemannian manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$ $\rho: \overline{M} \to [0, \infty)$ defining function for N

 $g = rac{d
ho\otimes d
ho + \hat{g} + o(
ho)}{
ho^2}$

(equivalently, $\overline{g} = \rho^2 g$ restricts to \hat{g} on N)

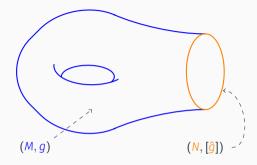


 $(N, [\hat{g}])$ conformal manifold (M, g) Riemannian manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$ $\rho: \overline{M} \to [0, \infty)$ defining function for N

$$g = \frac{d\rho \otimes d\rho + \hat{g} + o(\rho)}{\rho^2}$$

(equivalently, $\overline{g} = \rho^2 g$ restricts to \hat{g} on N)

 $(\overline{M}, \overline{g})$ is a conformal compactification $(N, [\hat{g}])$ is the conformal boundary



 $(N, [\hat{g}])$ conformal manifold (M, g) Riemannian manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$

 $\rho \colon \overline{\mathsf{M}} \to [0,\infty)$ defining function for N

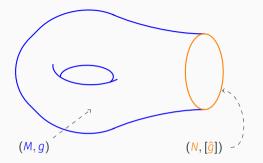
$$g = \frac{d\rho \otimes d\rho + \hat{g} + o(\rho)}{\rho^2}$$

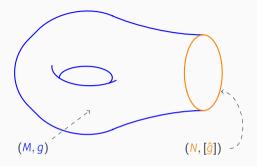
(equivalently, $\overline{g} = \rho^2 g$ restricts to \hat{g} on N)

 $(\overline{M}, \overline{g})$ is a conformal compactification $(N, [\hat{g}])$ is the conformal boundary

Riemannian invariants \implies conformal invariants

$$\sec(g) = -|d\rho|^2_{\overline{g}} + o(1)$$

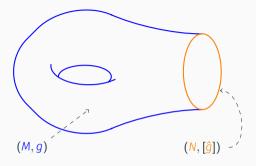




$$\sec(g) = -|d\rho|_{\overline{g}}^2 + o(1)$$

(M^{n+1}, g) is called

- asymptotically hyperbolic if $|d\rho|_{\overline{g}}^2 = 1$ on N
- Poincaré-Einstein if moreover $\operatorname{Ric}(g) = -ng$



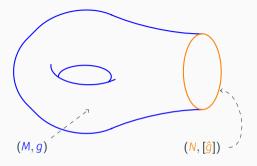
$$\sec(g) = -|d\rho|_{\overline{g}}^2 + o(1)$$

(M^{n+1}, g) is called

- asymptotically hyperbolic if $|d\rho|_{\overline{g}}^2 = 1$ on N
- Poincaré-Einstein if moreover $\operatorname{Ric}(g) = -ng$

Graham-Lee '91, Biquard '00, Lee '06: perturbation of Poincaré-Einstein metrics

 \implies new examples of Einstein metrics



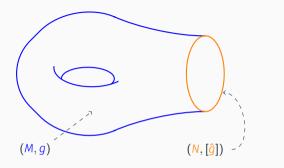
$$\sec(g) = -|d\rho|_{\overline{g}}^2 + o(1)$$

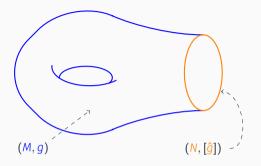
(M^{n+1}, g) is called

- asymptotically hyperbolic if $|d\rho|_{\overline{g}}^2 = 1$ on N
- Poincaré-Einstein if moreover $\operatorname{Ric}(g) = -ng$

Graham-Lee '91, Biquard '00, Lee '06: perturbation of Poincaré-Einstein metrics

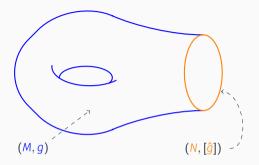
 \implies new examples of Einstein metrics





Answer

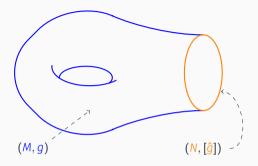
Bahuaud-Gicquaud-Lee-Marsh 10's: yes if



Answer

Bahuaud-Gicquaud-Lee-Marsh 10's: yes if

• existence of a convex core



Answer

Bahuaud-Gicquaud-Lee-Marsh 10's: yes if

- existence of a convex core
- $\cdot |\mathbf{R}-\mathbf{R}^0|_g, |\nabla^j \mathbf{R}|_g = O(e^{-ar})$

 $R^{0}(X, Y)Z = g(Y, Z)X - g(X, Z)Y$ $r = d_{g}(\cdot, o)$

Unique *complete, simply connected, Kähler* manifold whose **holomorphic sectional curvature** is constant equal to -1

Unique *complete, simply connected, Kähler* manifold whose **holomorphic sectional curvature** is constant equal to -1

Curvatures

$$R^{0}(X,Y)Z = \frac{1}{4}(g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY + 2g(X,JY)JZ)$$

Unique *complete, simply connected, Kähler* manifold whose **holomorphic sectional curvature** is constant equal to -1

Curvatures

•

$$R^{0}(X, Y)Z = \frac{1}{4} (g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX - g(JX, Z)JY + 2g(X, JY)JZ)$$

-1 \le \sec(P) \le - \frac{1}{4}
\sec(P) = -1 \le P = JP
\sec(P) = -\frac{1}{4} \le P \pm JP

Unique *complete, simply connected, Kähler* manifold whose **holomorphic sectional curvature** is constant equal to -1

Curvatures

$$R^{0}(X,Y)Z = \frac{1}{4} (g(Y,Z)X - g(X,Z)Y + g(JY,Z)JX - g(JX,Z)JY + 2g(X,JY)JZ)$$

-1 \le \sec(P) \le -1
\sec(P) \le -1
\sec(P) = -1 \le P = JP
\sec(P) = -\frac{1}{4} \le P \pm JP

Unique *complete, simply connected, Kähler* manifold whose **holomorphic sectional curvature** is constant equal to -1

Metric

 $g = dr \otimes dr + 4\sinh^2(r)\theta \otimes \theta + 4\sinh^2(r/2)\gamma$

Unique *complete, simply connected, Kähler* manifold whose **holomorphic sectional curvature** is constant equal to -1

Metric

$$g = dr \otimes dr + 4\sinh^2(r)\theta \otimes \theta + 4\sinh^2(r/2)\gamma$$

 θ standard contact form on $S^{2n+1} \subset \mathbb{C}^{n+1}$

$$\frac{\theta_p(v)}{2} = \frac{1}{2} \langle v, ip \rangle$$

 γ associated Levi form

 $\gamma_p(u,v) = d\theta_p|_{\ker\theta}(u,iv)$

Unique *complete, simply connected, Kähler* manifold whose **holomorphic sectional curvature** is constant equal to -1

Metric

$$g = dr \otimes dr + 4 \sinh^2(r)\theta \otimes \theta + 4 \sinh^2(r/2)\gamma$$

$$=\frac{d\rho\otimes d\rho+\theta\otimes \theta+\rho\gamma+o(\rho)}{\rho^2}$$

with $\rho = e^{-r}$

 θ standard contact form on $S^{2n+1} \subset \mathbb{C}^{n+1}$

$$\theta_p(\mathbf{v}) = \frac{1}{2} \langle \mathbf{v}, ip \rangle$$

 γ associated Levi form

 $\gamma_p(u,v) = d\theta_p|_{\ker\theta}(u,iv)$

CR manifold

 (N, H, J_H) with

- *H* hyperplane distribution
- J_H formally integrable almost complex structure on H

Strictly pseudoconvex if

- H contact
- $\exists \theta$ calibrating H with $d\theta|_{\ker \theta}(\cdot, J_H \cdot) > 0$

 $\operatorname{Isom}(\mathbb{CH}^{n+1}) = \operatorname{Aut}_{CR}(S^{2n+1})$

CR manifold

 (N, H, J_H) with

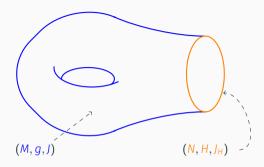
- *H* hyperplane distribution
- J_H formally integrable almost complex structure on H

Strictly pseudoconvex if

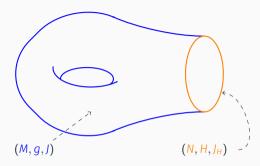
- H contact
- $\exists \theta$ calibrating H with $d\theta|_{\ker \theta}(\cdot, J_H \cdot) > 0$

 $\operatorname{Isom}(\mathbb{CH}^{n+1}) = \operatorname{Aut}_{CR}(S^{2n+1})$

Intrinsic geometry of $(\mathbb{CH}^{n+1}, g, J) \implies CR$ geometry of S^{2n+1}



 (N, H, J_H) CR manifold (M, g, J) (almost) Hermitian / Kähler manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$ $\rho \colon \overline{M} \to [0, \infty)$ defining function for N



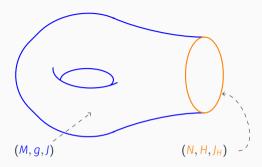
 (N, H, J_H) CR manifold

(M, g, J) (almost) Hermitian / Kähler manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$

 $\rho \colon \overline{\mathsf{M}} \to [0,\infty)$ defining function for N

$$g = \frac{d\rho \otimes d\rho + \theta \otimes \theta + \rho\gamma + o(\rho)}{\rho^2}$$

g is asymptotically complex hyperbolic and asymptotic to the CR structure



 (N, H, J_H) CR manifold

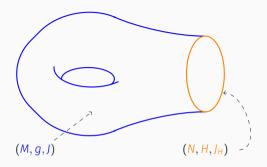
(M, g, J) (almost) Hermitian / Kähler manifold $\overline{M} = M \cup N$ compact manifold with boundary $\partial \overline{M} = N$

 $\rho \colon \overline{\mathsf{M}} \to [0,\infty)$ defining function for N

$$g = \frac{d\rho \otimes d\rho + \theta \otimes \theta + \rho\gamma + o(\rho)}{\rho^2}$$

g is asymptotically complex hyperbolic and asymptotic to the CR structure

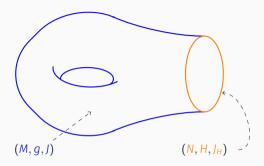
(almost) Hermitian / Kähler invariants \implies CR invariants



$$sec^{h}(g) = -1 + o(1)$$

$$sec^{\perp}(g) = -\frac{1}{4} + o(1)$$

$$Ric(g) = -\left(\frac{n}{2} + 1\right)g + o(1)$$

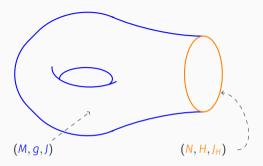


$$sec^{h}(g) = -1 + o(1)$$

$$sec^{\perp}(g) = -\frac{1}{4} + o(1)$$

$$Ric(g) = -\left(\frac{n}{2} + 1\right)g + o(1)$$

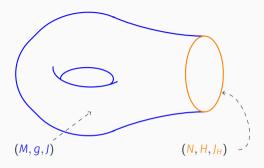
Examples: Cheng-Yau metric, Bergman metric



$$\operatorname{sec}^{h}(g) = -1 + o(1)$$
$$\operatorname{sec}^{\perp}(g) = -\frac{1}{4} + o(1)$$
$$\operatorname{Ric}(g) = -\left(\frac{n}{2} + 1\right)g + o(1)$$

Examples: Cheng-Yau metric, Bergman metric

Roth '99, Biquard '00, Matsumoto '20: perturbation of Kähler-Einstein metrics → new examples of Einstein metrics (CR structure not necessarily integrable here)



$$sec^{h}(g) = -1 + o(1)$$

$$sec^{\perp}(g) = -\frac{1}{4} + o(1)$$

$$Ric(g) = -\left(\frac{n}{2} + 1\right)g + o(1)$$

Examples: Cheng-Yau metric, Bergman metric

Roth '99, Biquard '00, Matsumoto '20: perturbation of Kähler-Einstein metrics → new examples of Einstein metrics (CR structure not necessarily integrable here)

(M, g, J) Hermitian: $J^2 = -\text{Id}$ and g(J, J) = g

(M, g, J) Hermitian: $J^2 = -\text{Id}$ and g(J, J) = g

Theorem [P. '22 -'23]

Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension ≥ 4 , with a convex core. Assume that

 $|R - R^{0}|_{g}, |\nabla J|_{g}, |\nabla R|_{g}, |\nabla^{2}J|_{g} = O(e^{-ar}), a > 1$

(M, g, J) Hermitian: $J^2 = -\text{Id}$ and $g(J \cdot, J \cdot) = g$

Theorem [P. '22 -'23]

Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension ≥ 4 , with a convex core. Assume that

$$|R - R^{0}|_{g}, |\nabla J|_{g}, |\nabla R|_{g}, |\nabla^{2}J|_{g} = O(e^{-ar}), a > 1$$

Then (M, J) is the interior of a compact almost complex manifold $(\overline{M}, \overline{J})$ with boundary such that

(M, g, J) Hermitian: $J^2 = -\text{Id}$ and $g(J \cdot, J \cdot) = g$

Theorem [P. '22 -'23]

Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension ≥ 4 , with a convex core. Assume that

$$|R - R^{0}|_{g}, |\nabla J|_{g}, |\nabla R|_{g}, |\nabla^{2}J|_{g} = O(e^{-ar}), a > 1$$

Then (M, J) is the interior of a compact almost complex manifold $(\overline{M}, \overline{J})$ with boundary such that

 $\cdot \overline{J}$ is continuous up to the boundary

(M, g, J) Hermitian: $J^2 = -\text{Id}$ and $g(J \cdot, J \cdot) = g$

Theorem [P. '22 -'23]

Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension ≥ 4 , with a convex core. Assume that

$$|R - R^{0}|_{g}, |\nabla J|_{g}, |\nabla R|_{g}, |\nabla^{2}J|_{g} = O(e^{-ar}), a > 1$$

Then (M, J) is the interior of a compact almost complex manifold $(\overline{M}, \overline{J})$ with boundary such that

- \cdot **J** is continuous up to the boundary
- $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

(M, g, J) Hermitian: $J^2 = -\text{Id}$ and $g(J \cdot, J \cdot) = g$

Theorem [P. '22 -'23]

Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension ≥ 4 , with a convex core. Assume that

$$|R - R^{0}|_{g}, |\nabla J|_{g}, |\nabla R|_{g}, |\nabla^{2}J|_{g} = O(e^{-ar}), a > 1$$

Then (M, J) is the interior of a compact almost complex manifold $(\overline{M}, \overline{J})$ with boundary such that

 \cdot **J** is continuous up to the boundary

• $J_0 = \overline{J}|_{H_0}$ is of class C^1 , formally integrable

• $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

(M, g, J) Hermitian: $J^2 = -\text{Id}$ and $g(J \cdot, J \cdot) = g$

Theorem [P. '22 -'23]

Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension ≥ 4 , with a convex core. Assume that

$$|R - R^{0}|_{g}, |\nabla J|_{g}, |\nabla R|_{g}, |\nabla^{2} J|_{g} = O(e^{-ar}), a > 1$$

Then (M, J) is the interior of a compact almost complex manifold $(\overline{M}, \overline{J})$ with boundary such that

- $\cdot \mathbf{J}$ is continuous up to the boundary
- $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

- $\cdot J_0 = \overline{J}|_{H_0}$ is of class C^1 , formally integrable
- · $(\partial \overline{M}, H_0, J_0)$ is CR strictly pseudoconvex

(M, g, J) Hermitian: $J^2 = -\text{Id}$ and g(J, J) = g

Theorem [P. '22 -'23]

Let (M, g, J) be a complete, non-compact, almost Hermitian manifold of real dimension ≥ 4 , with a convex core. Assume that

$$|R - R^{0}|_{g}, |\nabla J|_{g}, |\nabla R|_{g}, |\nabla^{2}J|_{g} = O(e^{-ar}), a > 1$$

Then (M, J) is the interior of a compact almost complex manifold $(\overline{M}, \overline{J})$ with boundary such that

- \cdot **J** is continuous up to the boundary
- $H_0 = (T\partial \overline{M}) \cap (\overline{J}T\partial \overline{M})$ is a contact distribution of class C^1

$$\cdot J_0 = \overline{J}|_{H_0}$$
 is of class C^1 , formally integrable

• $(\partial \overline{M}, H_0, J_0)$ is CR strictly pseudoconvex

Moreover, g is asymptotically complex hyperbolic: there exist ρ defining function, η^0 a C^1 contact form on $\partial \overline{M}$, such that

$$g = rac{d
ho \otimes d
ho + \eta^0 \otimes \eta^0 +
ho \gamma + o(
ho^{3/2})}{
ho^2}$$

Comments

Bland 80's:

Compactification for some open Kähler manifolds

- \cdot assumptions not totally geometric
- $\cdot |R R^0|_g = O(e^{-4r})$ a posteriori
- dim M = 4, g Einstein: only applies to spherical boundaries (consequence of Biquard-Herzlich '05)

Comments

Bland 80's:

Compactification for some open Kähler manifolds

- \cdot assumptions not totally geometric
- $\cdot |R R^0|_g = O(e^{-4r})$ a posteriori
- $\dim M = 4$, g Einstein: only applies to spherical boundaries (consequence of Biquard-Herzlich '05)

Bracci-Gaussier-Zimmer '18:

$$\begin{split} \Omega \subset \mathbb{C}^n \text{ bounded domain, } \partial \Omega \text{ of class } \mathcal{C}^{2,\alpha} \\ \partial \Omega \text{ strictly pseudoconvex if and only if} \\ \Omega \text{ carries a complete Kähler metric with} \end{split}$$

$$-1-\varepsilon \leqslant \sec^h \leqslant -1+\varepsilon$$

near $\partial \Omega$

Comments

Bland 80's:

Compactification for some open Kähler manifolds

- \cdot assumptions not totally geometric
- $\cdot |R R^0|_g = O(e^{-4r})$ a posteriori
- $\dim M = 4$, g Einstein: only applies to spherical boundaries (consequence of Biquard-Herzlich '05)

P. '21-'23

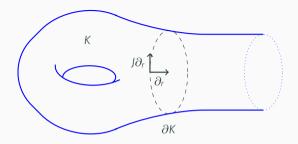
- $\cdot a > 3/2 \implies \mathcal{C}^1$ everywhere
- *g* Kähler ⇒ assumptions on *J* are superfluous

Bracci-Gaussier-Zimmer '18:

$$\begin{split} \Omega \subset \mathbb{C}^n \text{ bounded domain, } \partial \Omega \text{ of class } \mathcal{C}^{2,\alpha} \\ \partial \Omega \text{ strictly pseudoconvex if and only if} \\ \Omega \text{ carries a complete Kähler metric with} \end{split}$$

$$-1-\varepsilon \leqslant \sec^h \leqslant -1+\varepsilon$$

near $\partial \Omega$



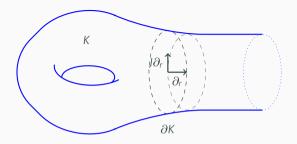
- \cdot K compact, codim = 0
- $\cdot \ \partial K$ smooth, orientable
- $sec(M \setminus K) < 0$

Normal exponential map

$$\mathcal{E}: (0,\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- Radial vector field ∂_r
- $\cdot J\partial_r$
- $\cdot \{\partial_r, J\partial_r\}^{\perp}$



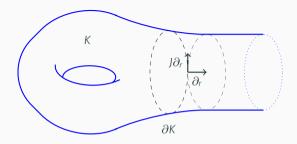
- \cdot K compact, codim = 0
- $\cdot \ \partial K$ smooth, orientable
- $sec(M \setminus K) < 0$

Normal exponential map

$$\mathcal{E}: (0,\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- Radial vector field ∂_r
- $\cdot J\partial_r$
- $\cdot \{\partial_r, J\partial_r\}^{\perp}$



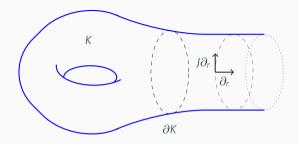
- \cdot K compact, codim = 0
- $\cdot \ \partial K$ smooth, orientable
- $sec(M \setminus K) < 0$

Normal exponential map

$$\mathcal{E}: (0,\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- Radial vector field ∂_r
- $\cdot J\partial_r$
- $\cdot \{\partial_r, J\partial_r\}^{\perp}$



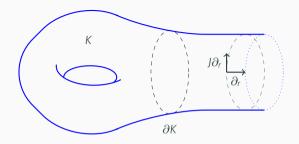
- \cdot K compact, codim = 0
- $\cdot \ \partial K$ smooth, orientable
- $sec(M \setminus K) < 0$

Normal exponential map

$$\mathcal{E}: (0,\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- Radial vector field ∂_r
- $\cdot J\partial_r$
- $\cdot \{\partial_r, J\partial_r\}^{\perp}$



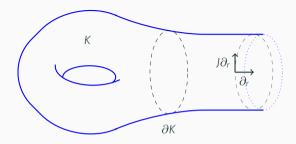
- \cdot K compact, codim = 0
- $\cdot \ \partial K$ smooth, orientable
- $sec(M \setminus K) < 0$

Normal exponential map

$$\mathcal{E}: (0,\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- Radial vector field ∂_r
- $\cdot J\partial_r$
- $\cdot \{\partial_r, J\partial_r\}^{\perp}$



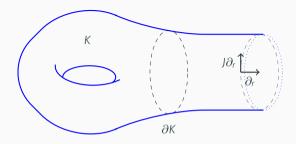
- \cdot K compact, codim = 0
- $\cdot \ \partial K$ smooth, orientable
- $sec(M \setminus K) < 0$

Normal exponential map

$$\mathcal{E}: (0,\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- Radial vector field ∂_r
- $\cdot J\partial_r$
- $\cdot \{\partial_r, J\partial_r\}^{\perp}$



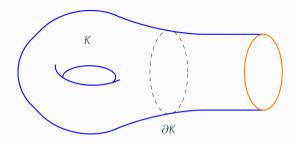
- \cdot K compact, codim = 0
- $\cdot \ \partial K$ smooth, orientable
- $sec(M \setminus K) < 0$

Normal exponential map

$$\mathcal{E}: (0,\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- Radial vector field ∂_r
- $\cdot J\partial_r$
- $\cdot \{\partial_r, J\partial_r\}^{\perp}$



- \cdot K compact, codim = 0
- $\cdot \ \partial K$ smooth, orientable
- $sec(M \setminus K) < 0$

Normal exponential map

$$\mathcal{E}: (0,\infty) \times \partial K \xrightarrow{\sim} \overline{M \setminus K}$$

$$\mathcal{E}(r,p) = \mathcal{E}_r(p) := \exp_p(r\nu(p))$$

- Radial vector field ∂_r
- $\cdot J\partial_r$
- $\cdot \{\partial_r, J\partial_r\}^{\perp}$

Admissible frame: $\{\partial_r, J\partial_r, E_1, \dots, E_{2n}\}$ orthonormal frame with $\nabla_{\partial_r} E_j = 0$

Admissible frame: $\{\partial_r, J\partial_r, E_1, \dots, E_{2n}\}$ orthonormal frame with $\nabla_{\partial_r} E_j = 0$

Associated coframes

 $\eta_r^0 = e^{-r} \mathcal{E}_r^* g(\cdot, J \partial_r)$ $\eta_r^j = e^{-r/2} \mathcal{E}_r^* g(\cdot, E_j)$

Admissible frame: $\{\partial_r, J\partial_r, E_1, \dots, E_{2n}\}$ orthonormal frame with $\nabla_{\partial_r} E_j = 0$

Associated coframes

 $\eta_r^0 = e^{-r} \mathcal{E}_r^* g(\cdot, J\partial_r)$ $\eta_r^j = e^{-r/2} \mathcal{E}_r^* g(\cdot, E_j)$

Associated Carnot metrics

$$\gamma_r = \sum_{j=1}^{2n} \eta_r^j \otimes \eta_r^j$$

Admissible frame: $\{\partial_r, J\partial_r, E_1, \dots, E_{2n}\}$ orthonormal frame with $\nabla_{\partial_r} E_j = 0$

Associated coframes

 $\eta_r^0 = e^{-r} \mathcal{E}_r^* g(\cdot, J\partial_r)$ $\eta_r^j = e^{-r/2} \mathcal{E}_r^* g(\cdot, E_j)$

Associated Carnot metrics

$$\boldsymbol{\gamma}_r = \sum_{j=1}^{2n} \boldsymbol{\eta}_r^j \otimes \boldsymbol{\eta}_r^j$$

Almost contact tensors

$$arphi_r = \mathcal{E}_r^*(\pi^\perp \circ \mathbf{J} \circ \pi^\perp)$$

where $\pi^{\perp} : T\overline{M \setminus K} \to \{\partial_r, J\partial_r\}^{\perp}$ orthogonal projection

Admissible frame: $\{\partial_r, J\partial_r, E_1, \dots, E_{2n}\}$ orthonormal frame with $\nabla_{\partial_r} E_j = 0$

Associated coframes

 $\eta_r^0 = e^{-r} \mathcal{E}_r^* g(\cdot, J\partial_r)$ $\eta_r^j = e^{-r/2} \mathcal{E}_r^* g(\cdot, E_j)$

Associated Carnot metrics

$$\gamma_r = \sum_{j=1}^{2n} \eta_r^j \otimes \eta_r^j$$

Almost contact tensors

$$arphi_{\mathsf{r}} = \mathcal{E}_{\mathsf{r}}^*(\pi^\perp \circ \mathsf{J} \circ \pi^\perp)$$

where $\pi^{\perp} : T\overline{M \setminus K} \to \{\partial_r, J\partial_r\}^{\perp}$ orthogonal projection

$$g = dr \otimes dr + e^{2r} \eta_r^0 \otimes \eta_r^0 + e^r \gamma_r$$

Strategy

Strategy

• $\{\eta_r^0,\ldots,\eta_r^{2n}\}$ locally converges in C^1 topology

Strategy

- $\{\eta^0_r,\ldots,\eta^{2n}_r\}$ locally converges in C^1 topology
- The limit $\{\eta^0,\ldots,\eta^{2n}\}$ is a coframe

Strategy

- $\{\eta^0_r,\ldots,\eta^{2n}_r\}$ locally converges in C^1 topology
- The limit $\{\eta^0,\ldots,\eta^{2n}\}$ is a coframe
- $\cdot \eta^0$ is contact

Strategy

- · $\{\eta^0_r,\ldots,\eta^{2n}_r\}$ locally converges in C^1 topology
- The limit $\{\eta^0,\ldots,\eta^{2n}\}$ is a coframe
- $\cdot \eta^0$ is contact

• φ_r converges in C^1 topology

Strategy

- · $\{\eta^0_r,\ldots,\eta^{2n}_r\}$ locally converges in C^1 topology
- The limit $\{\eta^0,\ldots,\eta^{2n}\}$ is a coframe
- $\cdot \eta^0$ is contact

- φ_r converges in C^1 topology
- The limit φ induces an almost complex structure J_0 on ker η^0

Strategy

- · $\{\eta^0_r,\ldots,\eta^{2n}_r\}$ locally converges in C^1 topology
- The limit $\{\eta^0,\ldots,\eta^{2n}\}$ is a coframe
- $\cdot \ \eta^{0}$ is contact

- φ_r converges in C^1 topology
- The limit φ induces an almost complex structure J_0 on ker η^0
- J_0 is formally integrable and $d\eta^0|_{\ker\eta^0}(\cdot,J_0\cdot)=\gamma$

Strategy

- $\{\eta^0_r,\ldots,\eta^{2n}_r\}$ locally converges in C^1 topology
- The limit $\{\eta^0,\ldots,\eta^{2n}\}$ is a coframe
- $\cdot \ \eta^0$ is contact

Relations

$$\begin{split} \varphi_r^2 &= -\mathrm{Id} + \eta_r^0 \otimes \xi_0^r \\ \eta_r^0 \circ \varphi_r &= 0 \\ \gamma_r(\varphi_r \cdot, \varphi_r \cdot) &= \gamma_r \\ d\eta_r^0(\cdot, \varphi_r \cdot) &= \gamma_r + O(e^{(1-a)r}) \end{split}$$

- φ_r converges in C^1 topology
- The limit φ induces an almost complex structure J_0 on ker η^0
- J_0 is formally integrable and $d\eta^0|_{\ker\eta^0}(\cdot,J_0\cdot)=\gamma$

with
$$\boldsymbol{\xi}_0^r = \mathcal{E}_r^*(e^r \boldsymbol{J} \partial_r)$$

Convergence of the coframes

$$\begin{cases} \partial^2 \eta_r^0 + 2\partial_r \eta_r^0 &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_r^k \\ \partial^2 \eta_r^j + &\partial_r \eta_r^j &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_r^k \end{cases}$$

Convergence of the coframes

$$\begin{cases} \partial^2 \eta_r^0 + 2\partial_r \eta_r^0 &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_r^k \\ \partial^2 \eta_r^j + &\partial_r \eta_r^j &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_r^k \end{cases} \qquad \begin{cases} \partial_r^2 \left(e^r \mathcal{L}_u(\eta_r^0(v))\right) - e^r \mathcal{L}_r\left(\eta_r^0(v)\right) &= O\left(e^{(2-a)r}\right) \\ \partial_r^2 \left(e^{r/2} \mathcal{L}_u(\eta_r^j(v))\right) - e^{r/2} \mathcal{L}_r\left(\eta_r^j(v)\right) &= O\left(e^{(3/2-a)r}\right) \end{cases}$$

Convergence of the coframes

$$\begin{cases} \partial^2 \eta_r^0 + 2\partial_r \eta_r^0 &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_r^k \\ \partial^2 \eta_r^j + \partial_r \eta_r^j &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_r^k \end{cases} \qquad \begin{cases} \partial_r^2 \left(e^r \mathcal{L}_u(\eta_r^0(v))\right) - e^r \mathcal{L}_r\left(\eta_r^0(v)\right) &= O\left(e^{(2-a)r}\right) \\ \partial_r^2 \left(e^{r/2} \mathcal{L}_u(\eta_r^j(v))\right) - e^{r/2} \mathcal{L}_r\left(\eta_r^j(v)\right) &= O\left(e^{(3/2-a)r}\right) \end{cases}$$

Convergence of φ_r

$$\partial_r \varphi_r = \varphi_r \circ S_r - S_r \circ \varphi_r = O\left(e^{(3/2-a)}\right)$$

 $S_r = \mathcal{E}_r^*(S), S = \nabla \partial_r$

Convergence of the coframes

$$\begin{cases} \partial^{2} \eta_{r}^{0} + 2 \partial_{r} \eta_{r}^{0} &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_{r}^{k} \\ \partial^{2} \eta_{r}^{j} + \partial_{r} \eta_{r}^{j} &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_{r}^{k} \end{cases} \qquad \begin{cases} \partial_{r}^{2} \left(e^{r} \mathcal{L}_{u}(\eta_{r}^{0}(v))\right) - e^{r} \mathcal{L}_{r}\left(\eta_{r}^{0}(v)\right) \\ \partial_{r}^{2} \left(e^{r/2} \mathcal{L}_{u}(\eta_{r}^{j}(v))\right) - e^{r/2} \mathcal{L}_{r}\left(\eta_{r}^{j}(v)\right) \end{cases} = O\left(e^{(3/2-a)r}\right) \end{cases}$$

Convergence of φ_r

$$\partial_r \varphi_r = \varphi_r \circ S_r - S_r \circ \varphi_r = O\left(e^{(3/2-a)}\right) \qquad \qquad S_r = \mathcal{E}_r^*(S), S = \nabla \partial_r$$

 $\varphi_r^2 = -\mathrm{Id} + \eta_r^0 \otimes \xi_0^r \implies J_0 = \varphi|_{\ker \eta^0}$ is an almost complex structure

Convergence of the coframes

$$\begin{cases} \partial^{2} \eta_{r}^{0} + 2 \partial_{r} \eta_{r}^{0} &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_{r}^{k} \\ \partial^{2} \eta_{r}^{j} + \partial_{r} \eta_{r}^{j} &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_{r}^{k} \end{cases} \qquad \begin{cases} \partial_{r}^{2} \left(e^{r} \mathcal{L}_{u}(\eta_{r}^{0}(v))\right) - e^{r} \mathcal{L}_{r}\left(\eta_{r}^{0}(v)\right) \\ \partial_{r}^{2} \left(e^{r/2} \mathcal{L}_{u}(\eta_{r}^{j}(v))\right) - e^{r/2} \mathcal{L}_{r}\left(\eta_{r}^{j}(v)\right) \end{cases} = O\left(e^{(3/2-a)r}\right) \end{cases}$$

Convergence of φ_r

$$\partial_r \varphi_r = \varphi_r \circ S_r - S_r \circ \varphi_r = O\left(e^{(3/2-a)}\right) \qquad \qquad S_r = \mathcal{E}_r^*(S), S = \nabla \partial_r$$

 $\varphi_r^2 = -\mathrm{Id} + \eta_r^0 \otimes \xi_0^r \implies J_0 = \varphi|_{\ker \eta^0}$ is an almost complex structure

 C^1 convergence of φ_r , integrability of J_0 ,...

Convergence of the coframes

$$\begin{cases} \partial^{2} \eta_{r}^{0} + 2 \partial_{r} \eta_{r}^{0} &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_{r}^{k} \\ \partial^{2} \eta_{r}^{j} + \partial_{r} \eta_{r}^{j} &= \sum_{k=0}^{2n} O\left(e^{(1/2-a)r}\right) \eta_{r}^{k} \end{cases} \qquad \begin{cases} \partial_{r}^{2} \left(e^{r} \mathcal{L}_{u}(\eta_{r}^{0}(v))\right) - e^{r} \mathcal{L}_{r}\left(\eta_{r}^{0}(v)\right) \\ \partial_{r}^{2} \left(e^{r/2} \mathcal{L}_{u}(\eta_{r}^{j}(v))\right) - e^{r/2} \mathcal{L}_{r}\left(\eta_{r}^{j}(v)\right) \end{cases} = O\left(e^{(3/2-a)r}\right) \end{cases}$$

Convergence of φ_r

$$\partial_r \varphi_r = \varphi_r \circ S_r - S_r \circ \varphi_r = O\left(e^{(3/2-a)}\right) \qquad \qquad S_r = \mathcal{E}_r^*(S), S = \nabla \partial_r$$

 $\varphi_r^2 = -\mathrm{Id} + \eta_r^0 \otimes \xi_0^r \implies J_0 = \varphi|_{\ker \eta^0}$ is an almost complex structure

 \mathcal{C}^1 convergence of φ_r , integrability of J_0 ,...: too long

Non-Kähler case: $\nabla_{\partial_r} J \partial_r \neq 0$...but = $O(e^{-ar})$

Non-Kähler case: $\nabla_{\partial_r} J \partial_r \neq 0$...but = $O(e^{-ar})$

Key fact

There exists a unique vector field E_0 on $\overline{M \setminus K}$ such that

- $\cdot |E_0 J\partial_r|_g = o(1)$
- $\cdot \nabla_{\partial_r} E_0 = 0$

Non-Kähler case: $\nabla_{\partial_r} J \partial_r \neq 0$...but = $O(e^{-ar})$

Key fact

There exists a unique vector field E_0 on $\overline{M \setminus K}$ such that

- $\cdot |E_0 J\partial_r|_g = o(1)$
- $\cdot \nabla_{\partial_r} E_0 = 0$

Same strategy, but

- + replace $J\partial_r$ by E_0 almost everywhere
- large amount of extra estimates
- extra error terms in all equations must be understood

Tack så mycket!