Calcul différentiel, rappels sur les sous-variétés de \mathbb{R}^n

Exercice 1 (Définitions).

Rappeler la définition des objets suivants :

- 1. La différentielle en $x \in U \subset \mathbb{R}^p$ d'une application $f \colon U \to \mathbb{R}^q$.
- 2. Une application $f: U \subset \mathbb{R}^p \to \mathbb{R}^q$ de classe \mathcal{C}^1 , de classe \mathcal{C}^k , lisse.
- 3. Un difféomorphisme, un difféomorphisme local.
- 4. Une sous-variété de \mathbb{R}^n .

Exercice 2 (Théorèmes importants).

Rappeler les énoncés des théorèmes suivants :

- 1. Le théorème des fonctions implicites.
- 2. Le théorème du rang constant.
- 3. Le théorème d'inversion locale.

Exercice 3 (Inversion par rapport à une sphère).

Soit f l'inversion par rapport à la sphère unité de \mathbb{R}^n , définie par

$$f: \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}^n \setminus \{0\}$$

$$x \longmapsto \frac{x}{\|x\|^2}$$

où $\|\cdot\|$ est la norme euclidienne standard de \mathbb{R}^n .

- 1. Montrer que f est un \mathcal{C}^1 -difféomorphisme de $\mathbb{R}^n \setminus \{0\}$ sur lui-même.
- 2. Montrer que la différentielle de f en tout point préserve les angles.

Remarque : on a montré que l'inversion par rapport à la sphère unité était une application conforme. En toute généralité, l'inversion par rapport à la sphère de centre $\Omega \in \mathbb{R}^n$ et de rayon R > 0 est donnée par

$$I_{\Omega,R}(x) \colon \mathbb{R}^n \setminus \{\Omega\} \longrightarrow \mathbb{R}^n \setminus \{\Omega\}$$

$$x \longmapsto \Omega + R^2 \frac{x - \Omega}{\|x - \Omega\|^2}$$

On montre de la même manière que c'est une application conforme.

Exercice 4.

Soit f l'application

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

 $(x, y, z) \longmapsto (e^{2y} + e^{2z}, e^{2x} - e^{2z}, x - y).$

Montrer que l'image de f est un ouvert strictement inclus dans \mathbb{R}^3 .

Exercice 5.

Soit $f: U \subset \mathbb{R}^p \to \mathbb{R}^q$ une application injective de classe \mathcal{C}^1 . Montrer que $p \leqslant q$ et qu'il existe un ouvert dense $V \subset U$ tel que $\forall x \in V$, $\mathrm{d}f(x) \colon \mathbb{R}^p \to \mathbb{R}^q$ est injective.

Exercice 6.

Soit $M_0 \in M_n(\mathbb{R})$ une matrice carrée ayant n valeurs propres réelles distinctes. Montrer qu'il existe un voisinage ouvert $U \subset M_n(\mathbb{R})$ de M_0 tel que toute matrice $M \in U$ possède n valeurs propres réelles distinctes.

Montrer que l'on peut choisir U de sorte que la fonction $M \in U \mapsto (\lambda_1(M), \dots, \lambda_n(M)) \in \mathbb{R}^n$ est lisse, où $\lambda_1(M) < \dots < \lambda_n(M)$ sont les valeurs propres de M.

Exercice 7 (La sphère unité).

- 1. Montrer que la sphère unité $\mathbb{S}^n = \left\{ (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_i^2 = 1 \right\}$ est une sous-variété de \mathbb{R}^{n+1} . Quel est l'espace tangent à $x \in \mathbb{S}^n$?
- 2. Montrer, en munissant \mathbb{S}^n d'un atlas différentiable, que c'est une variété différentielle.

Exercice 8 (Sous-variétés de $M_n(\mathbb{R})$).

Dans cet exercice, on identifie $M_n(\mathbb{R})$ avec \mathbb{R}^{n^2} . Montrer que les sous-ensembles suivants sont des sous-variétés de $M_n(\mathbb{R})$ et identifier leur espace tangent en I_n .

- 1. $O_n(\mathbb{R})$.
- 2. SO(n).
- 3. $GL_n(\mathbb{R})$.
- 4. $SL_n(\mathbb{R})$.