M1 - Géomeétrie avancée 2021-2022 : TD 0 Correction

Calcul différentiel, rappels sur les sous-variétés de R"
Correction

Exercice 1 (Définitions).

1. If U C RP is an open subset and if f: U — R? is a function, then f is differentiable at
x € U if there exists a linear map df(z) € L(RP,R?) such that

fx+h)=f(x)+df(z)h+ o(h)

for h small enough. In this case, df(x) is unique and is called the differential of f at .
Note that there is a unique normed vector space topology on R? and R?, so that the

notation o(h) refers to oj. (|| h[|) for any norms [/ - || and || - || on R? and R9.

2. f is said to be of class C! if f is differentiable at every x € U and if moreover, the
function
df: z € U — df(z) € L(RP,R?) ~ RP*4
is continuous.

By induction, f is said to be of class CFT1 if f is of class C' and of df is of class C¥.

It is said to be smooth (or of class C*) if it is of class C* for all k € N.
3. f: U = V is said to be a C*¥ diffeomorphism if

e fis of class C¥,
e f is bijective,
e its inverse f~! is of class C*.
It is said to be a local C* diffeomorphism if for all z € U, there exists an open neigh-

bourhood of z in U, say U,, and an open neighbourhood of f(z) in V, say V, such that
f: U, =V, is a C* diffeomorphism.

4. Three equivalent definitions of a submanifold of R”. M C R™ is a C* submanifold of R”
of dimension p if:

(submersion) Yo € M,3U C R™ an open neighbourhood of z in R?, 3f: U — R™ P a Ck-
submersion (i.e Vy € U, df(y) is surjective), such that M NU = f~1 ({0}).

(immersion) Yz € M, 3U C R™ open neighbourhood of z, 3V C RP open neighbourhood of 0
and 3f: V — R™ a Ck-immersion (i.e Yy € V,df(y) is injective) such that f(0) = z
and f is an homeomorphism from V to U N M.
(diffeomorphism) Yz € M, 3U C R™ open neighbourhood of xz, 3V C R™ open neighbourhood of
0 and 3f: U — V a CF-diffeomorphism with f(z) = 0 such that f(UNM) =
VN (RP x {0}"P).

Note that, thanks to the following Theorems, these two definitions are equivalent.

Exercice 2 (Théorémes importants).



1. The implicit function Theorem. Let f: U C R? x R? — RY be a C*¥ map and
(x0,Y0) € U such that f(zg,yo) = 0. Suppose that the partial differential dy f(xo,v0) €
L(RY) is invertible, (0, f(xo,yo) is the differential at yo of the map y — f(xo,y)). Then
there exist V' C RP open neighbourhood of xg, W C RP x R? open neighbourhood of
(x0,%0), and ¢: V — RP a C* map such that

Y(z,y) e W, f(z,y) =0 <= z €V and y = p(z).
Moreover, we have Yz € V, do(z) = — (9, f (z, 0(x))) " 0 pf(z, p(z)).

2. The constant rank Theorem. Let f: U C R? — R? be a C¥ map such that the rank
of its differential is a constant map:

Jr € N,Vz € U,rank (df(z)) =

Then there exists p: Vo — V; and ¢: Wy, — Wo two CF-diffeomorphisms, where
V; and Vp are open neighbourhood of z and 0 in RP, and W;,) and Wy are open

neighbourhood of f(z) and 0 in R?, such that the map ]7 =tpofoe V)= Wyis
given by the map B

fx1,...,2p) = (21,...,2,,0...,0).
In other words, f is conjugate (by two C*¥ diffeomorphisms) to the restriction of the
projection onto the r-first coordinates.

3. The inverse function Theorem. Let f: U € R® — R” be a C¥ map. Suppose
df(x) € L(R™) is invertible. Then there exists U, C U an open neighbourhood of z in
U and Vj(,) C R™ an open neighbourhood of f(z) such that the restriction

f: Uz — Vf(x)
is a C* diffeomorphism. Moreover, we have Yy € Uy, df 1 (f(y)) = (df(y)) "
In other words, f is a local C*-diffeomorphism at x.

Exercice 3 (Inversion par rapport a une sphére).

1. Note that f o f = idgn\{o) and thus, f is invertible with f~! = f. Moreover, f is C!
as a product of two C! maps. It is then a bijective C! function with C! inverse: it is by
definition a C'-diffeomorphism.

2. Let us compute the differential of f: fix z € R™ \ {0} and h small enough. We have

z+h
flx+h)=——
|l + AJ|?
B T+ h
[2]|2 + 2 (x, h) + || ]2
B T+ h 1
l2]1* 1+ 2(e, h) + o(h)
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We thus have

n " - 1 x T
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[l
To conclude, one can either:

e invoke the fact that df(z) = W%L, where s,1 is the reflection across the hyperplane
zt ={y e R" | (z,y) = 0},

e or do some (easy) computations that yield (df(x)u,df(z)v) |

Exercice 4.

First, f is indeed of class C'. Moreover, if (x,%,2) € R3, we have by a direct computation:

0 2% 222
Matean (df (2, y,2)) = | 2e** 0 —2e**
1 -1 0

This yields det (df(z,y,2)) = —4 (62(“2) + 62(y+z)) # 0. It follows that df(x,y, z) is invert-
ible, and the inverse function Theorem provides the existence of an open neighbourhood of
(z,y,2) in R3, say Viz,y,2), and of an open neighbourhood of f(x,y, 2) in R3, say Wi(z,y,2)> such
that the restriction f: Vi, ) = Wiy o) isa C'-diffeomorphism. It follows that

Im(f) = U W(:E,y,z)

(z,y,2)ER3

is open in R?. Note that the equation f(z,y,z) = (—1,0,0) has no solution as 2€2¥ +2¢%* > 0
for all (z,y, 2), so that Im(f) # R3.
Exercice 5.
We will use the following fact: if u: U C R® — L(RP,R?) is a continuous family of linear
maps, then the function r — rank(u(z)) is lower semi-continuous', that is

Vz € U,3V, C U open neighbourhood of z,Vy € V,, rank(u(y)) > rank(u(zx)).
Identifying linear maps in finite dimension with their matrices, this fact follows from a conti-
nuity argument about the determinant of some sub-matrix.
Let A = {rank(df(z)) |z € U} C N. Then A # @ and A is bounded above by min{p, ¢}: it
follows that m = max A exists and that m < min{p, ¢}. Consider

W ={z € U | rank(df(z)) =m}.

Then W # @ by definition of m. Let us show that W is open. The map f being C', df is
continuous and the map = € U + rank (df(x)) is lower semi-continuous. Let z € W. There
exists an open neighbourhood V' C U of z such that

Vy € V,m = rank(df(z)) < rank(df(y)) < maxrank(df(z)) =m,

zeU

'During the class, I made the mistake to say it was upper semi-continuous. Apologize!



and df has constant rank m on V. In follows that V' C W, and W is open. We are now able
to apply the constant rank Theorem on W: if z € W is fixed, there exists a diffeomorphism
w: Vo = Vg (resp. 9 Vf(x) — 17{)) between neighbourhoods of x and 0 in R? (resp. of f(x)
and 0 in R?) such that _ N

f=vofor™: V=V
is given by f(xl,...,xp) = (z1,...,Zm,0,...,0). As f is supposed injective and ¢, 1 are
diffeomorphisms, then f is injective. This implies that m = p: if not, we would have, for
e > 0 small enough, f(0,...,0,¢) = f(0,...,0,—¢), a contradiction. Recall that by definition,
m < min{p, ¢}, so that m =p < q.
For now, we know that on the open subset W, f is of rank p < ¢, that is, f is an immersion
on W. To conclude, we need to show that W is dense in U; in order to do so, let us show
that if V' C U is an open subset, then VNW # &. Fix V C U open and define my =
max{rank(df(z)) | x € V} and Wy = {& € V | rank(df(z)) = my}. The exact same study
as above shows that Wy # @, that my = p and finally, we have Wy, C VNW # &. This
concludes the proof.

Exercice 6.

Let U = {(z1,...,2,) € R" | 21 < --- < x,}, which is open in R". Consider the map

fr MRy xU  — R
(M, (z1,...,20)) +— (xm(1), - xm (@)

where s is the characteristic polynomial of M. It is a smooth map as it is polynomial in
every entry. Let My be a matrix with n distincts real eigenvalues A1 < ... < A,: we thus have
f (Mo, (A1, ..., A\n)) = 0. The matrix (in the canonical basis of R™) of a2 f (Mo, (x1,...,xp))
is given by
X, (1)
Matcan (82f(M(), (331, . ,:L’n)) =
X,Mo (zn)

Therefore, det (O2f (Mo, (A1, .-, n)) = [Iiz) Xy, (Ai) # O (recall that all ); are supposed
distincts and xy, is of degree n, so that xz, and X/Mo do not share any root). The result now
follows from a direct application of the implicit function Theorem: there exists W C M, (R)xU
an open neighbourhood of (M, (A1,...,A\,)), V C M,(R) an open neighbourhood of My and
¢: V — U a smooth map such that

V(M7()\177)\n)) eVVaf(Mﬂ(Aha)\n)):O < M€V and ()\b?)\n):SO(M)v

that is, all matrices M € V have n distinct eigenvalues A\ (M) < --- < A, (M) which are
smooth maps of M.



