2021-2022 : TD 2'

Definitions (Tangent bundle of a submanifold, vector fields, parallelizability).

Let $M^m \subset \mathbb{R}^n$ be a submanifold. Recall that in that case, $T_pM \subset \mathbb{R}^n$ is a linear subspace of dimension m. We define

$$TM = \bigcup_{p \in M} \{p\} \times T_p M \subset \mathbb{R}^n \times \mathbb{R}^n$$

and we call TM the tangent bundle of M. It is a submanifold of $\mathbb{R}^n \times \mathbb{R}^n$ (admitted).

A vector field on $M^m \subset \mathbb{R}^n$ is a smooth function $X: M^n \to \mathbb{R}^n$ such that for all $p \in M$, $X(p) \in T_pM$.

 $M^m \subset \mathbb{R}^n$ is said to be *parallelizable* if there exists m vector fields X_1, \ldots, X_m on M such that for all $p \in M$, $\{X_1(p), \ldots, X_m(p)\}$ is a linearly independent family (i.e a basis of T_pM).

Exercise 1 (Tangent space of a submanifold).

Let $M \subset \mathbb{R}^m$ and $N \in \mathbb{R}^n$ be submanifolds of \mathbb{R}^m and \mathbb{R}^n respectively.

- 1. Describe the tangent space $T_pM \subset \mathbb{R}^m$ of the submanifold M of \mathbb{R}^m at a point p, for each of the four characterizations of a submanifold. Why is there no ambiguity in identifying the tangent space $\subset \mathbb{R}^m$ at a point p of M seen as a submanifold with its tangent space at p where M is seen as a manifold (endowed with the differentiable structure naturally induced)?
- 2. Let $U \subset \mathbb{R}^m$ and $V \subset \mathbb{R}^n$ be open neighborhoods. Let $\widetilde{f}: U \to V$ be a smooth map such that $f := \widetilde{f}|_{M \cap U}: M \cap U \to N \cap V$. Show that f is a smooth map between manifolds and that

$$\mathrm{d}f_p = \left(\mathrm{d}\widetilde{f_p}\right)\Big|_{T_pM} : T_pM \to T_{f(p)}N.$$

Exercise 2 (Veronese embedding).

- 1. Let $f: M \to N$ be a proper injective immersion between two manifolds. Show that f is an embedding (we admit that the topology of a manifold is metrizable¹). Is it a necessary condition?
- 2. Consider the map $f: \mathbb{RP}^2 \to \mathbb{RP}^5$ defined in homogeneous coordinates by the relation $f(x:y:z) = (x^2:y^2:z^2:xy:yz:zx)$. Show that f is well defined and that it is an embedding.

Exercise 3 (Tangent space of the torus).

- 1. Find an embedding $\mathbb{T}^2 \to \mathbb{R}^4$ and show that \mathbb{T}^2 is parallelizable.
- 2. Show that \mathbb{T}^2 can be embedded in \mathbb{R}^3 . "Draw" a parallelization of $\mathbb{T}^2 \subset \mathbb{R}^3$.
- 3. Is \mathbb{T}^n parallelizable?

Exercise 4 (Tangent space of spheres).

¹This is a consequence

- 1. Show that \mathbb{S}^1 is parallelizable. Is \mathbb{S}^2 parallelizable?
- 2. A Lie group is smooth manifold G endow withed a group structure such that the multiplication $\mu: G \times G \longrightarrow G$ and the inversion $\eta: G \longrightarrow G$ are smooth maps. In this exercise, we consider Lie group that are submanifolds of \mathbb{R}^n for some n.
 - (a) Show that if $G \subset \mathbb{R}^n$ is a Lie group, then G parallelizable.
 - (b) Show that SU(2) is a Lie group diffeomorphic to \mathbb{S}^3 .
 - (c) Deduce that \mathbb{S}^3 is parallelizable.
 - (d) (bonus) Looking at \mathbb{S}^3 as the unit sphere of \mathbb{C}^2 , find 3 linearly independant vector fields on \mathbb{S}^3 .

Exercise 5 (Computation of a differential).

Compute the differential of $\overline{F}: \mathbb{T}^2 \to \mathbb{S}^2$ defined as the quotient of the map from \mathbb{R}^2 to \mathbb{S}^2 :

$$F: (x, y) \mapsto (\cos(2\pi x)\cos(2\pi y), \cos(2\pi x)\sin(2\pi y), \sin(2\pi x)).$$

On which set is \overline{F} a local diffeomorphism? Is \overline{F} restricted to this domain a global diffeomorphism?

Exercise 6 (Extending smooth function).

Let $M \subset \mathbb{R}^p$ and $N \subset \mathbb{R}^q$ be two submanifolds and $f : M \to N$ a smooth function. Show that there exists an open neighbourhood of M in \mathbb{R}^p and a smooth function $g : U \to \mathbb{R}^q$ such that $g|_M = f$. Hint: use a partition of unity.

Exercise 7 (Critical points VS critical values).

- 1. Let $F \subset \mathbb{R}$ be a closed subset. Show that there exists a smooth function $f: M \to \mathbb{R}_+$ such that $f(x) = 0 \iff x \in K$.
- 2. Let $K \subset [0,1]$ be a fat Cantor set², of measure $\lambda(K) \in (0,1)$. Show that there exists a smooth homeomorphism $f : \mathbb{R} \to \mathbb{R}$ whose critial set is exactly K. What is the Lebesgue measure of f(K)?

Exercise 8 (Change of variable).

The change of variable Theorem says that if you have a (at least) \mathcal{C}^1 diffeomorphism φ between two open sets of \mathbb{R}^n , you have a relation between the measure of a borelian set B, and that of $\varphi(B)$. Using Sard's Theorem, show that the result is still valid if φ is an homeomorphism of class \mathcal{C}^1 .

Exercise 9 (Introduction to Morse Theory).

Using some nice embeddings of \mathbb{S}^2 and \mathbb{T}^2 , show that there exists smooth real functions on these manifolds with a very few critical points. *Hint:* consider projections onto some axis.

Draw what happens when you "go through" a critical value.

²The important fact is that K is closed, with emply interior