M1 — Advanced Geometry 2021-2022 : TD 2’

Submanifolds, Tangent spaces and Differentials

Critical values, Sard’s Theorem
Correction

Exercise 1 (Tangent space of a submanifold).

Let M C R™ and N € R" be submanifolds of R” and R"” respectively.

1. (a) If M is locally given by a submersion f: U C R* — R*"™™ with MNU = f~1({0}),
then
T, M = ker (df(p))

(b) If M is locally given by an immersion f: V C R™ — U C R", with f(0) =p and f
homeomorphism from V to U N M, then

Tp,M = Tm (df(0))

(c¢) If M is locally given by a diffeomorphism f: U C R* — V C R”, with f(p) =0
and M NU = f~1 (VN (R™ x {0})), then

T,M = df(0) - (R™ x {0})

Note that if M is considered as an abstract manifold in itself, and 7,,M as an abstract
vector space, then the inclusion map

t: M — R"
is a smooth embedding and its differential at p
de(p): T,M — R"

is an injective linear map with image d¢(p) (T, M) canonically isomorphic to the extrinsic
definitions of T,,M above.

2. Let U C R™ and V' C R" be open neighborhoods. Let f: U — V be a smooth map such
that f := flyrv : MNU — N NV. Show that f is a smooth map between manifolds
and that

dfy = <d};)

oM : TpM — Tf(p)N

Exercise 2 (Veronese embedding).

1. It suffices to show that f is a homeomorphism onto its image. It will then be a smooth
immersion which is an homeomorphism onto its image, that is, an embedding. Notice
that it is sufficient to show that f~! is continuous. Here are two proofs:

(a) Using that a manifold is metrizable, i.e that its topology is defined thanks to a
metric.
Let {yn }nen be a converging sequence in f(M) with limit y € f(M). Let z,, and =
be the unique point in M with f(z,) = y, and f(z) = y (which do exist because
f is injective). Then the subset K = (Upen{yn})U{y} is compact. The function f



being proper, f 1K) = (Upen{zn}) U{x} is compact. Hence, {x,, }nen has a limit
points. Let T be on of them. By continuity of f, we have f(x,) — f(Z), that is
yn — f(Z), and f(x) = f(Z). By injectivity of f, T = z. It follows that (z,,) has a
unique limit point x, and thus, x,, — x, that is, f~!(y,) — f~'(y). Finally, f~!is
continuous.

(b) Using that a manifold is compactly generated, that is a subset is open / closed if
and only if it is open / closed in any compact subset. In particular, it suffices to
show that the restriction of f~! to any compact subset of f(M) is continuous.

Let K C f(M) be a compact: f being proper, f~!(K) is compact. Then, the
restriction f|;-1(k): f~YHK) — K is continuous between f~1(K), compact Haus-
dorff, and K, compact. Hence, it is a homeomorphism. It follows that f~!|x is
continuous. This concludes the proof.

2. Let us first show that f is well defined. Let (x : y : ) € RP? be represented by (x,y, z) #
(0,0,0) and (2/,9/,2") # (0,0,0): there exists A\ # 0 such that (z,y,2) = (Az, Ay, A\z).
But then, (22,42, 22, vy, yz, zx) = X2(2/2, 92, 22, 2"y /2, 2'2") # (0,0,0,0,0,0) and it
follows that f is well defined.

/

Let us show that f is injective. Suppose f(z :y:2) = f(2' : ¢/ : 2/). Then there exists

t # 0 with
(22 =127
y2 — ty/2
22 =t
zy =tx'y
yz =ty
yr =t2'a’

Notice first that ¢ > 0. The three first equations shows that

x =+t
y =ity
2 =4+t

The fourth equation shows that either (z,y) = Vt(z',9) or (z,y) = —Vt(2',y'): that
is, the sign is the same for the two first equations. Similarly, the fifth equation shows
that the sign before v/t is the same for y and z. It follows that (z :y: 2) = (2’ : ¢/ : 2),
and then, f is injective.

Let us now show that f is an immersion. Consider the affine chart (p.,U,) of RP?
defined by U, = {(z : y : 2) € RP? | x # 0} and ¢,': R? — U, defined by
o y,2) = (1 : y : 2). Similarly, consider the chart (Up, o) of RP® defined by
Us={(a:b:c:d:e: f[)eRP’|a#0} and pu(a:b:c:d:e: f) = L1(bcde,f).
Then f(U,) C U, and in these charts, we have

f=waofop;l: R? — R®
(27 y) ’—> (y27z27y7 y27 Z)

It is smooth as a polynomial function, and if (y,z) € R?, the differential of fat (z,y)



has matrix in the canonical bases

2y 0

B 0 2z

Matean (df(x,y)) =11 o
z oy

0 1

and thus, df(y, z) has rank 2. Hence, f is an immersion on U,. Similarly, f is a smooth
immersion on Uy = {(z:y:2) ERP? |y £ 0} and on U, = {(z : y: 2) € RP? | 2 #£ 0}
and finally, f is a smooth immersion on U, UU, U U, = RP2.

Therefore, f is an injective smooth inmmersion on RP2. As RP? is compact and f
continuous, f is obviously proper. By 1., f is an embedding.

Exercise 3 (Tangent space of the torus).
1. Consider the map f: R? — R* defined by
f (t1,t2) = (cos 2mty, sin 27ty , cos 2mty, sin 27ts)

It is Z*-invariant and descends as a smooth map f: T? — R* such that f = fop. If
(t1,t2) € R?, then df(t1,t2) has matrix in the canonical bases

—sin 27ty 0
_ cos 27ty 0
Matcan (df(th t2)) =2r 0 —sin 27to
0 cos 27ty

and df(t1,t2) is of rank 2. Recall that p: R? — T? is a local diffeomorphism. Therefore,
if (t1,t2) € R?, the chain rule yields

df(t1,t2) = df(t1, t2) o dp(ts, ta)

from which we deduce, recalling that dp(t1,t2) is a linear isomorphism

df(f1,t2) = df(t1,t2) o (dp(t1, t2)) "

Thus, df(#1,%2) has rank 2. This being true for all (t1,t2) € T2, f is an immersion.
One can check that f is injective: for example, f: R? — C* x C* is a group homomor-
phism with kernel Z2, so that f is injective.

Finally, T? is compact Hausdorff, so that f is proper (any continuous function on a
compact Haussdorff space is proper). Hence, f is an injective proper immersion, and is
an embedding.

Let us now consider T? = f(T?) C R* the embedded torus in R* and fix any point p =

(cos 27ty sin 27ty cos 2mta, sin 27ts) € To. Then T2 is locally given by the immersion
f: R? — R* defined above, and T, T? = Imdf(t,t2), which is then

T,Ty = {AX1(p) + nXa(p) | (A, p) € R?}



—sin 27ty 0

with X (p) = o8 (2)7rt1 and Xa(p) = | 811?27#2 , which are linearly independant.
0 cos 27ty

It follows that X7 and X, are smooth vector fields on T9 which are everuwhere linearly
independant, so that Ty is trivializable.

2. If R > r, the map

9Rr: R2 — ]Rs
(R + rcos 2mty) cos 2wty
(t1,t2) — | (R4 rcos2mty)sin 27ty
rsin 27t

is Z? invariant and descends to the quotient as IRyt T? — R? which is an embedding:
this can be derived from the exact same study as in 1.

Figure 1: A torus embedded in R3

3. An exact same study as in 1. shows that one can embed T™ in R?” and that the vector

fields _ )
0
cos 271ty :
cos 27ty 02
— sin 27t;
X; = !
¢ : cos 2t;
cos 27ty 0
sin 27y, )
- O -

give a parallelization of T" C R?".

Remark: we have shown that these particular embedded tori in R* or R3 are parallelizable.
In fact, this notion is intrinsic and does not depends on the embedding in RY, but it requires
the definition of vector bundle isomorphism, which has not been seen yet.

Exercise 4 (Tangent space of spheres).

1. Let v: (—¢,e) — R? be a smooth arc. Then for all ¢, ||y(t)||> = 1. Differentiating this
shows that (v(0),7(0)) = 0, so that 7/(0) € y(0)*. We deduce that T.,)S* < ~(0)*,



and we have in fact an equality because S! is a one dimensional submanifold of R?, so
that T,Y(O)Sl is one dimensional.

If follows that X (z,y) = (—y, ) is a smooth vector field on S', which does not vanish.
Thus, we have found a parallelization of T'S.

The two dimensional sphere is not parallelizable because of the Hairy ball Theorem: any
smooth (in fact, continuous) vector field on S? vanishes somewhere.

2. Let G C R" be a Lie group.

(a)

For g € G, consider the left translation by g:

Ly: G — G
h +—— gh

which is smooth as the restiction to {g} x G of the multiplication p. Then L1 is
also smooth and Ly o Ly-1 = Ly-1 0 Ly = Idg, so that Ly is a diffeomorphism.

As Ly(e) = g, the linear map
dLg(e): T.G — T,G C R"

is a linear isomorphism. It follows from the smoothness of i that the map g € G —
dL4(e) € L(T.G,R"™) is smooth.
Let (e1,...em) be a basis of T.G and consider X;: G — R" defined by

Xi(g) = dLg(e) - e;

By construction, it is a smooth vector field on G, and at each point ¢ € G,
(X1(9),-..,Xm(g)) is a basis of T4G. Thus, G is parallelizable.

It is a well-known fact that SU(2) is a subgroup of GLy(C) with

su@ ={|% 2| laP+1se =1},

Consider the map

f: R4 — MQ(C)
r+1y =zt
(@.,2:8) — [—z +it T — iy}

Then f is an injective linear map, and is thus a smooth embedding. Moreover, S3
is a submanifold of R* whose image is precisely SU(2): it follows that SU(2) is a
submanifold of Ms(C) ~ R® diffeomorphic to S3.

The multiplication in M>(C) is smooth, and so is its restriction to SU(2). Also,
the inversion in GL2(C) is given by

a b7 1 [d b
c dl ad—becl|—c a

which is smooth, and its restriction to SU(2) is smooth.



(c) We know that SU(2) is parallelizable as a Lie group. Hence, it has 3 vectors fields
Y1, Y2 and Y3 that are pointwise linearly independant. It follows that X;(p) =
df(p) 'Yi(f(p)) are three vector fields on S® which are pointwise linearly indepen-
dant, and then, S? is parallelizable.

(d) (bonus) In C2, define
1=(1,0), i=(4,0), j=1(0,1), k = (0,1),

which form an orthonormal basis if C2 ~ R* for the usual inner product. One can
show that the multiplication defined by

iP=j =K =ijk=-1

extended linearly, is associative (in fact, we have constructed the quaternions) and
satisfies [|q¢'[| = llqll[|¢[|-

Define on S? the functions
Xi(z) = ix, Xo(z) = jz, Xs3(z) = kz.

Show that they are vector fields on S? and that they parallelize the sphere.

Exercise 5 (Computation of a differential).

Exercise 6 (Extending smooth function).

Sketch of a proof:

1.

5.

First, note that if f: M™ C RP — N™ C R? is smooth, then its co-extension f: M — R?
is smooth, and "there is nothing to tell on the right". Let us then focus on the left.

. Second, take a chart on RP adapted to M, that is, in that chart, M is given by M NU =

{(zt,...,2™,0,...,0)}.

. In that chart, extend f by f(z!,...,2P) = f(z!,...,2™).

. Choose a locally finite open covering of M by charts as above and consider a partition

of unity subordinate to this cover. Glue the extensions constucted above thanks to this
partition of unity: this gives an extension of f on an open subset of RP.

Enjoy.

Exercise 7 (Critical points VS critical values).

1.

R\ F is an open subset of the real line. If non-empty, it is a countable union of disjoint
open intervals: say R\ F' = Ujer(a;, b;) with I finite or countable. It may be possible
that one of the a; (and only one) is equal to —oo, and similarly, that one of the b; (and
only one) if equal to 4oc0.

For i € I, construct a smooth nonnegative function f;: R — R with f;(z) >0 < z €
(a;,b;). Then the function f =3} . ; f; is a solution.



2. As K is closed, there exists by 1. a smooth nonnegative function g: R — R with g(z) =
0 <= =z € K. Define

Then f is smooth with f/ = g > 0, and is thus nondecreasing. The function g vanishes
exactly on K, which is of empty interior: hence, if # < y, then f(y)— f(z) = [ g(¢) dt >
0, and f is strictly increasing. If follows that f is a smooth homeomorphism of R onto
its image. Its set of critical points is K, by definition of g, which has Lebesgue measure
A(K) > 0. But by Sard’s Theorem, f (Crit(f)) has measure zero.

Remark: the function f constructed above may not be a homeomorphism from R onto
R, because its image may not be all of R. But we can adapt the proof in order to do so:
show it!

Exercise 8 (Change of variable).

First, notice that we have the disjoint union ¢(U) = (¢(U) \ ¢(Crite))Up(Crity). Therefore:

)\(cp(U)):/ ld)\:/ 1d)\+/ 1d)
(U) ©(U)\p(Crity) ¢(Critep)

From Sard’s Theorem, ¢(Crity) has measure zero, and thus, we have

Ap(U)) = LdA

/<p(U)\<p(Crit<P)

Since ¢ is an homeomorphism, it is injective and it follows that ¢(U)\¢(Crity) = ¢ (U \ Crity).
But by definition of Crity, de(x) is invertible is z € U \ Crity, and from the inverse function
Theorem, the restriction ¢|¢n\cyit, 18 @ diffeomorphism onto its image. The usual change of
variable gives

M) = [ Jdetdglar
U\Crite

and to conclude, note that on Crity, we have | det dp| = 0, so that we have the formula

Mp(U) = /U | det d| dA.



