
M1 – Advanced Geometry 2021-2022 : TD 2’

Submanifolds, Tangent spaces and Differentials
Critical values, Sard’s Theorem

Correction

Exercise 1 (Tangent space of a submanifold).

Let M ⊂ Rm and N ∈ Rn be submanifolds of Rm and Rn respectively.

1. (a) IfM is locally given by a submersion f : U ⊂ Rn → Rn−m, withM ∩U = f−1({0}),
then

TpM = ker (df(p))

(b) If M is locally given by an immersion f : V ⊂ Rm → U ⊂ Rn, with f(0) = p and f
homeomorphism from V to U ∩M , then

TpM = Im (df(0))

(c) If M is locally given by a diffeomorphism f : U ⊂ Rn → V ⊂ Rn, with f(p) = 0
and M ∩ U = f−1 (V ∩ (Rm × {0})), then

TpM = df−1(0) · (Rm × {0})

Note that if M is considered as an abstract manifold in itself, and TpM as an abstract
vector space, then the inclusion map

ι : M → Rn

is a smooth embedding and its differential at p

dι(p) : TpM → Rn

is an injective linear map with image dι(p) (TpM) canonically isomorphic to the extrinsic
definitions of TpM above.

2. Let U ⊂ Rm and V ⊂ Rn be open neighborhoods. Let f̃ : U → V be a smooth map such
that f := f̃ |M∩U : M ∩ U → N ∩ V . Show that f is a smooth map between manifolds
and that

dfp =
(
df̃p

)∣∣∣
TpM

: TpM → Tf(p)N.

Exercise 2 (Veronese embedding).

1. It suffices to show that f is a homeomorphism onto its image. It will then be a smooth
immersion which is an homeomorphism onto its image, that is, an embedding. Notice
that it is sufficient to show that f−1 is continuous. Here are two proofs:

(a) Using that a manifold is metrizable, i.e that its topology is defined thanks to a
metric.
Let {yn}n∈N be a converging sequence in f(M) with limit y ∈ f(M). Let xn and x
be the unique point in M with f(xn) = yn and f(x) = y (which do exist because
f is injective). Then the subset K = (∪n∈N{yn})∪{y} is compact. The function f
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being proper, f−1(K) = (∪n∈N{xn})∪{x} is compact. Hence, {xn}n∈N has a limit
points. Let x̃ be on of them. By continuity of f , we have f(xn) → f(x̃), that is
yn → f(x̃), and f(x) = f(x̃). By injectivity of f , x̃ = x. It follows that (xn) has a
unique limit point x, and thus, xn → x, that is, f−1(yn)→ f−1(y). Finally, f−1 is
continuous.

(b) Using that a manifold is compactly generated, that is a subset is open / closed if
and only if it is open / closed in any compact subset. In particular, it suffices to
show that the restriction of f−1 to any compact subset of f(M) is continuous.
Let K ⊂ f(M) be a compact: f being proper, f−1(K) is compact. Then, the
restriction f |f−1(K) : f

−1(K) → K is continuous between f−1(K), compact Haus-
dorff, and K, compact. Hence, it is a homeomorphism. It follows that f−1|K is
continuous. This concludes the proof.

2. Let us first show that f is well defined. Let (x : y : z) ∈ RP2 be represented by (x, y, z) 6=
(0, 0, 0) and (x′, y′, z′) 6= (0, 0, 0): there exists λ 6= 0 such that (x, y, z) = (λx, λy, λz).
But then, (x2, y2, z2, xy, yz, zx) = λ2(x′2, y′2, z′2, x′y′, y′z′, z′x′) 6= (0, 0, 0, 0, 0, 0) and it
follows that f is well defined.

Let us show that f is injective. Suppose f(x : y : z) = f(x′ : y′ : z′). Then there exists
t 6= 0 with 

x2 = tx′2

y2 = ty′2

z2 = tz′2

xy = tx′y′

yz = ty′z′

yx = tz′x′

Notice first that t > 0. The three first equations shows that
x = ±

√
tx′

y = ±
√
ty′

z′ = ±
√
tz′

The fourth equation shows that either (x, y) =
√
t(x′, y′) or (x, y) = −

√
t(x′, y′): that

is, the sign is the same for the two first equations. Similarly, the fifth equation shows
that the sign before

√
t is the same for y and z. It follows that (x : y : z) = (x′ : y′ : z′),

and then, f is injective.

Let us now show that f is an immersion. Consider the affine chart (ϕx, Ux) of RP2

defined by Ux = {(x : y : z) ∈ RP2 | x 6= 0} and ϕ−1x : R2 → Ux defined by
ϕ−1x (y, z) = (1 : y : z). Similarly, consider the chart (U0, ϕ0) of RP5 defined by
Ua =

{
(a : b : c : d : e : f) ∈ RP5 | a 6= 0

}
and ϕa(a : b : c : d : e : f) = 1

a(b, c, d, e, f).
Then f(Ux) ⊂ Ua and in these charts, we have

f̃ = ϕa ◦ f ◦ ϕ−1x : R2 −→ R5

(z, y) 7−→ (y2, z2, y, yz, z)

It is smooth as a polynomial function, and if (y, z) ∈ R2, the differential of f̃ at (x, y)

2



has matrix in the canonical bases

Matcan

(
df̃(x, y)

)
=


2y 0
0 2z
1 0
z y
0 1


and thus, df̃(y, z) has rank 2. Hence, f is an immersion on Ux. Similarly, f is a smooth
immersion on Uy = {(x : y : z) ∈ RP2 | y 6= 0} and on Uz = {(x : y : z) ∈ RP2 | z 6= 0}
and finally, f is a smooth immersion on Ux ∪ Uy ∪ Uz = RP2.

Therefore, f is an injective smooth inmmersion on RP2. As RP2 is compact and f
continuous, f is obviously proper. By 1., f is an embedding.

Exercise 3 (Tangent space of the torus).

1. Consider the map f : R2 → R4 defined by

f (t1, t2) = (cos 2πt1, sin 2πt1, cos 2πt2, sin 2πt2)

It is Z2-invariant and descends as a smooth map f : T2 → R4 such that f = f ◦ p. If
(t1, t2) ∈ R2, then df(t1, t2) has matrix in the canonical bases

Matcan (df(t1, t2)) = 2π


− sin 2πt1 0
cos 2πt1 0

0 − sin 2πt2
0 cos 2πt2


and df(t1, t2) is of rank 2. Recall that p : R2 → T2 is a local diffeomorphism. Therefore,
if (t1, t2) ∈ R2, the chain rule yields

df(t1, t2) = df(t1, t2) ◦ dp(t1, t2)

from which we deduce, recalling that dp(t1, t2) is a linear isomorphism

df(t1, t2) = df(t1, t2) ◦ (dp(t1, t2))−1

Thus, df(t1, t2) has rank 2. This being true for all (t1, t2) ∈ T2, f is an immersion.

One can check that f is injective: for example, f : R2 → C∗ × C∗ is a group homomor-
phism with kernel Z2, so that f is injective.

Finally, T2 is compact Hausdorff, so that f is proper (any continuous function on a
compact Haussdorff space is proper). Hence, f is an injective proper immersion, and is
an embedding.

Let us now consider T2 = f(T2) ⊂ R4 the embedded torus in R4 and fix any point p =
(cos 2πt1, sin 2πt1, cos 2πt2, sin 2πt2) ∈ T2. Then T2 is locally given by the immersion
f : R2 → R4 defined above, and TpT2 = Imdf(t1, t2), which is then

TpT2 =
{
λX1(p) + µX2(p) | (λ, µ) ∈ R2

}
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with X1(p) =


− sin 2πt1
cos 2πt1

0
0

 and X2(p) =


0
0

− sin 2πt2
cos 2πt2

, which are linearly independant.

It follows that X1 and X2 are smooth vector fields on T2 which are everuwhere linearly
independant, so that T2 is trivializable.

2. If R > r, the map

gR,r : R2 −→ R3

(t1, t2) 7−→

(R+ r cos 2πt1) cos 2πt2
(R+ r cos 2πt1) sin 2πt2

r sin 2πt1


is Z2 invariant and descends to the quotient as gR,r : T2 → R3 which is an embedding:
this can be derived from the exact same study as in 1.

Figure 1: A torus embedded in R3

3. An exact same study as in 1. shows that one can embed Tn in R2n and that the vector
fields

Xi


cos 2πt1
cos 2πt2

...
cos 2πtn
sin 2πtn

 =



0
...
0

− sin 2πti
cos 2πti

0
...
0


give a parallelization of Tn ⊂ R2n.

Remark: we have shown that these particular embedded tori in R4 or R3 are parallelizable.
In fact, this notion is intrinsic and does not depends on the embedding in RN , but it requires
the definition of vector bundle isomorphism, which has not been seen yet.

Exercise 4 (Tangent space of spheres).

1. Let γ : (−ε, ε) → R2 be a smooth arc. Then for all t, ‖γ(t)‖2 = 1. Differentiating this
shows that 〈γ(0), γ′(0)〉 = 0, so that γ′(0) ∈ γ(0)⊥. We deduce that Tγ(0)S1 ⊂ γ(0)⊥,
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and we have in fact an equality because S1 is a one dimensional submanifold of R2, so
that Tγ(0)S1 is one dimensional.

If follows that X(x, y) = (−y, x) is a smooth vector field on S1, which does not vanish.
Thus, we have found a parallelization of TS1.
The two dimensional sphere is not parallelizable because of the Hairy ball Theorem: any
smooth (in fact, continuous) vector field on S2 vanishes somewhere.

2. Let G ⊂ Rn be a Lie group.

(a) For g ∈ G, consider the left translation by g:

Lg : G −→ G
h 7−→ gh

which is smooth as the restiction to {g} ×G of the multiplication µ. Then Lg−1 is
also smooth and Lq ◦ Lg−1 = Lg−1 ◦ Lg = IdG, so that Lg is a diffeomorphism.
As Lg(e) = g, the linear map

dLg(e) : TeG→ TgG ⊂ Rn

is a linear isomorphism. It follows from the smoothness of µ that the map g ∈ G 7→
dLg(e) ∈ L(TeG,Rn) is smooth.
Let (e1, . . . em) be a basis of TeG and consider Xi : G→ Rn defined by

Xi(g) = dLg(e) · ei

By construction, it is a smooth vector field on G, and at each point g ∈ G,
(X1(g), . . . , Xm(g)) is a basis of TgG. Thus, G is parallelizable.

(b) It is a well-known fact that SU(2) is a subgroup of GL2(C) with

SU(2) =

{[
α β

−β α

]
| |α|2 + |β|2 = 1

}
.

Consider the map

f : R4 −→ M2(C)

(x, y, z, t) 7−→
[
x+ iy z + it
−z + it x− iy

]
Then f is an injective linear map, and is thus a smooth embedding. Moreover, S3
is a submanifold of R4 whose image is precisely SU(2): it follows that SU(2) is a
submanifold of M2(C) ' R8 diffeomorphic to S3.
The multiplication in M2(C) is smooth, and so is its restriction to SU(2). Also,
the inversion in GL2(C) is given by[

a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
which is smooth, and its restriction to SU(2) is smooth.
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(c) We know that SU(2) is parallelizable as a Lie group. Hence, it has 3 vectors fields
Y1, Y2 and Y3 that are pointwise linearly independant. It follows that Xi(p) =
df(p)−1Yi(f(p)) are three vector fields on S3 which are pointwise linearly indepen-
dant, and then, S3 is parallelizable.

(d) (bonus) In C2, define

1 = (1, 0), i = (i, 0), j = (0, 1), k = (0, i),

which form an orthonormal basis if C2 ' R4 for the usual inner product. One can
show that the multiplication defined by

i2 = j2 = k2 = ijk = −1

extended linearly, is associative (in fact, we have constructed the quaternions) and
satisfies ‖qq′‖ = ‖q‖‖q′‖.
Define on S3 the functions

X1(x) = ix, X2(x) = jx, X3(x) = kx.

Show that they are vector fields on S3 and that they parallelize the sphere.

Exercise 5 (Computation of a differential).

Exercise 6 (Extending smooth function).

Sketch of a proof:

1. First, note that if f : Mm ⊂ Rp → Nn ⊂ Rq is smooth, then its co-extension f : M → Rq
is smooth, and "there is nothing to tell on the right". Let us then focus on the left.

2. Second, take a chart on Rp adapted to M , that is, in that chart, M is given by M ∩U =
{(x1, . . . , xm, 0, . . . , 0)}.

3. In that chart, extend f by f̃(x1, . . . , xp) = f(x1, . . . , xm).

4. Choose a locally finite open covering of M by charts as above and consider a partition
of unity subordinate to this cover. Glue the extensions constucted above thanks to this
partition of unity: this gives an extension of f on an open subset of Rp.

5. Enjoy.

Exercise 7 (Critical points VS critical values).

1. R \ F is an open subset of the real line. If non-empty, it is a countable union of disjoint
open intervals: say R \ F = ∪i∈I(ai, bi) with I finite or countable. It may be possible
that one of the ai (and only one) is equal to −∞, and similarly, that one of the bi (and
only one) if equal to +∞.

For i ∈ I, construct a smooth nonnegative function fi : R→ R with fi(x) > 0 ⇐⇒ x ∈
(ai, bi). Then the function f =

∑
i∈I fi is a solution.
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2. As K is closed, there exists by 1. a smooth nonnegative function g : R→ R with g(x) =
0 ⇐⇒ x ∈ K. Define

f(x) =

∫ x

0
g(t) dt.

Then f is smooth with f ′ = g > 0, and is thus nondecreasing. The function g vanishes
exactly on K, which is of empty interior: hence, if x < y, then f(y)−f(x) =

∫ y
x g(t) dt >

0, and f is strictly increasing. If follows that f is a smooth homeomorphism of R onto
its image. Its set of critical points is K, by definition of g, which has Lebesgue measure
λ(K) > 0. But by Sard’s Theorem, f (Crit(f)) has measure zero.

Remark: the function f constructed above may not be a homeomorphism from R onto
R, because its image may not be all of R. But we can adapt the proof in order to do so:
show it!

Exercise 8 (Change of variable).

First, notice that we have the disjoint union ϕ(U) = (ϕ(U) \ ϕ(Critϕ))∪ϕ(Critϕ). Therefore:

λ(ϕ(U)) =

∫
ϕ(U)

1 dλ =

∫
ϕ(U)\ϕ(Critϕ)

1 dλ+

∫
ϕ(Critϕ)

1 dλ

From Sard’s Theorem, ϕ(Critϕ) has measure zero, and thus, we have

λ(ϕ(U)) =

∫
ϕ(U)\ϕ(Critϕ)

1 dλ

Since ϕ is an homeomorphism, it is injective and it follows that ϕ(U)\ϕ(Critϕ) = ϕ (U \ Critϕ).
But by definition of Critϕ, dϕ(x) is invertible is x ∈ U \Critϕ, and from the inverse function
Theorem, the restriction ϕ|U\Critϕ is a diffeomorphism onto its image. The usual change of
variable gives

λ(ϕ(U)) =

∫
U\Critϕ

|det dϕ| dλ

and to conclude, note that on Critϕ, we have | det dϕ| = 0, so that we have the formula

λ(ϕ(U)) =

∫
U
|det dϕ|dλ.
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