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Flow of a vector field
Correction

Warning. All the following corrections rely on one simple fact: in geometry, we need to draw
things in order to understand what’s happening. The reader is invited to draw vector fields,
charts and integral lines if willing to understand what follows.

Exercise 1.

We want to find a chart (O, ψ) around x such that for all y ∈ O, dψ(y) ·X(y) is equal to e1,
the first vector of the canonical basis of Rn.

Let ϕ : U 3 x→ Rn be a chart centered at x (that is, ϕ(x) = 0). Since X(x) 6= 0, X does not
vanish in a neighbourhood of x: up to shrinking, we suppose that X 6= 0 on U .

Now, up to an affine transformation, we can suppose that at the point x, dϕ(x) ·X(x) is equal
to e1 ∈ T0Rn = Rn, the first vector of the canonical basis of Rn. We want to build a chart for
which this equality is true everywhere. Consider the vector field Y = ϕ∗X on ϕ(U), that is

∀z ∈ ϕ(U), Y (z) = dϕ(ϕ−1(z)) ·X(ϕ−1(z))

(this is just the vector field X read in the chart (O, φ)) and let φ : D → ϕ(U) be its flow.
Define

F : V ⊂ Rn −→ ϕ(U)
(x1, . . . , xn) 7−→ φ

(
x1,
(
0, x2, . . . , xn

))
where V =

{(
x1, . . . , xn

)
|
(
x1,
(
0, x2, . . . , xn

))
∈ D

}
, which is open as the preimage of D by

the continuous function ι : Rn → Rn+1 defined by ι(x1, . . . , xn) = (x1, 0, x2, . . . , xn). Notice
that 0 ∈ V since ι(0) = 0 ∈ D.

F is clearly smooth, and we have, by the definition of the flow of a vector field

∀(x1, . . . , xn) ∈ V, ∂F

∂x1
(z) =

∂

∂x1
φ
(
x1, (0, x2, . . . , xn)

)
= Y

(
φ
(
x1, (0, x2, . . . , xn)

))
which gives, at (x1, . . . , x

n) = 0:

∂F

∂x1
(0) = Y (φ(0, 0)) = Y (0) = e1

The time 0 map of a flow being the identity map, we have

F (0, x2, . . . , xn) = φ
(
0, (0, x2, . . . , xn)

)
= (0, x2, . . . , xn)

so that ∂F
∂xj (0) = ej for j > 2.

Therefore, dF (0) = Id. By the inverse function Theorem, there exists W ⊂ V open subset
such that F : W → F (W ) ⊂ ϕ(U) is a diffeomorphism. It moreover satisfies the equality

∂F

∂x1
(z) = Y (F (z))

Recall that by definition of partial derivatives, we have ∂F
∂x1 = dF · e1. Hence, it holds that

∀w ∈ F (W ), d
(
F−1

)
(w) · Y (w) = e1

Recall that Y = ϕ∗X, so that the chain rule gives, wherever it makes sense

d
(
F−1 ◦ ϕ

)
(z) ·X(z) = d

(
F−1

)
(ϕ(z)) ◦ dϕ(z) ·X(z) = d

(
F−1

)
)(ϕ(z)) · Y (ϕ(z)) = e1

and finally, the chart ψ = F−1 ◦ ϕ defined on O = ϕ−1(F (W )) is a solution.
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Exercise 2.

1. Fix x ∈M . Let us show by induction that ∀n > 1,
[
−n ε

2 , n
ε
2

]
⊂ Ix.

• for n = 1, it follows from the assumption.
• suppose

[
−n ε

2 , n
ε
2

]
⊂ Ix. Let x− = φ(−n ε

2 , x) and x+ = φ(n ε
2 , x). By assymptions,

(−ε, ε) ⊂ Ix− , Ix+ so that φ(·, x±) are defined on [− ε
2 ,

ε
2 ]. The curve

γ : [−(n+ 1) ε2 , (n+ 1) ε2 ] −→ M

t 7−→


φ
(
t+ n ε

2 , x
−) if t ∈ [−(n+ 1) ε2 ,−n

ε
2 ]

φ(t, x) if t ∈ [−n ε
2 , n

ε
2 ]

φ
(
t− n ε

2 , x
+
)

if t ∈ [n ε
2 , (n+ 1) ε2 ]

is then smooth (check that) and satisfies γ′ = X(γ), γ(0) = x. By maximality of
the flow, we have that

[
−(n+ 1) ε2 , (n+ 1) ε2

]
⊂ Ix.

Thus, R = ∪n>1

[
−n ε

2 , n
ε
2

]
⊂ Ix and Ix = R. This being true for all x ∈ M , X is a

complete vector field.

Remark. The morality is that if there is a uniform temporal interval on which the
solutions of the Cauchy problem dφ(t, x)

dt
= X(φ(t, x))

φ(0, x) = x

are all defined, then they are defined at any time.

2. Recall that D is open in R ×M . Since the product topology is generated by products
of open subsets and as (0, x) ∈ D for all x ∈ M , there exist εx > 0 and Wx ⊂ M open
neighbourhood of x with

∀w ∈M, (0, x) ∈ (−εx, εx)×Wx ⊂ D

Now, if M is compact, so is {0} ×M ⊂
⋃

x∈M (−εx, εx) ×Wx, and there exists a finite
subcover

{0} ×M ⊂
n⋃

i=1

(−εxi , εxi)×Wxi

Set ε = mini=1,...,n εxi : it follows that (−ε, ε)×M ⊂ D. By 1., D = R×M , and finally,
X is complete.

Exercise 3.

1. Suppose the image of φ(·, x) is relatively compact. Then there exists an accumulation
point of φ(t, x) when t→ bx: call it z. Suppose by contradiction that bx < +∞.

Because D is open, there exists ε > 0 and W ⊂ M open neighbourhood of z such that
(−ε, ε)×W ⊂ D. Let bx− ε

3 < t0 < bx be such that y = φ(t0, x) ∈W . Then (−ε, ε) ⊂ Iy,
and thus φ( ε2 , y) is defined. But then

φ
(ε

2
, y
)

= φ
(ε

2
, φ(t0, x)

)
2



and t0+ ε
2 ∈ Ix by maximality. But by construction, we have t0+ ε

2 > bx− ε
3 + ε

2 = bx+ ε
6 ,

which is in contradiction with bx = sup Ix.

It follows that bx = +∞.

2. Say suppX = K is compact.

If x /∈ K, X(x) = 0, then γ(t) = x is a solution on R of γ′ = X(γ), γ(0) = x, and
therefore Ix = R.
If x ∈ K, then ∀t ∈ Ix, φ(t, x) ∈ K: if not, there would exist some t0 with φ(t0, x) /∈ K,
and thus, x = φ(−t0, φ(t0, x)) = φ(t0, x) /∈ K from the discussion above about initial
datum in M \K. If follows that φ(·, x) has image in K, which is compact, and thus, by
1, sup Ix = +∞. The exact same proof as in 1. shows that we also have inf Ix = −∞.
It follows that Ix = R.
Finally, for any x ∈M , Ix = R. It follows that X is complete.

Exercise 4.

1. Up to a translation, we can suppose B is centered at 0.

Let X be the constant vector field on Rn defined by X(p) = b− a. Its flow is defined by
φX(t, p) = p+ t(b− a). φ(1, ·) is a diffeomorphism sending a to b but has non compact
support.

Consider a cut-off function f : Rn → R such that f ≡ 1 on B(0, r′), where a, b ∈
B(0, r′) ( B(0, r), and f ≡ 0 on Rn \ B(0, r). Define X̃ = fX. This vector field has
compact support so that it is complete: let φ̃ be its flow, which is defined for all time.
By construction, X|B(0,r′) = X̃|B(0,r′), so that φ̃(1, a) = b. But as X̃|Rn\B(0,r) = 0 we
have φ̃(1, x) = x if ‖x‖ > r.

It follows that φ̃(1, ·) : Rn → Rn is a diffeomorphism with compact support in B(0, r)
sending a to b.

2. Fix x ∈M and define Wx = {y ∈M | ∃f ∈ Diff(M), f(x) = y} the orbit of x under the
action Diff(M) y M . First, Wx 6= ∅ since x ∈ Wx: the identity map is a diffeomor-
phism. Let us show that Wx is both open and closed in M .

Let ϕ : U 3 x→ Rn be a chart centered at x with B(0, r) ⊂ ϕ(U). Fix y ∈ ϕ−1(B(0, r)).
By 1., there exists a diffeomorphism u : Rn → Rn with compact support in B(0, r) such
that u(0) = ϕ(y). Then the function

f : M −→ M

z 7−→

{
ϕ−1 ◦ u ◦ ϕ(z) if z ∈ U
z if z /∈ U

is a diffeomorphism of M sending x to y. Therefore, ϕ−1(B(0, r)) ⊂ Wx, and Wx is a
neighbourhood of x.

Note that x ∈ Wy ⇐⇒ y ∈ Wx (because for a diffeomorphism f , f(x) = y ⇐⇒ x =
f−1(y)), so that in fact, Wx is a neighbourhood of any of its points. Thus, Wx is open.

To show that Wx is closed, notice that

M \Wx =
⋃

z /∈Wx

Wz
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is open.

But then, if M is connected, Wx is non-empty and both open and closed, so that Wx =
M , and Diff(M) yM transitively.

3. • If dimM > 2.
The key is to show that if (x1, . . . , xk) are distinct and so are (y1, . . . , yk), then
there exist k continuous paths γj : [0, 1]→M with disjoint images with γj(0) = xj
and γj(1) = yj : we leave this as an exercise.
Now, there exists k disjoint open subset Uj with γj([0, 1]) ⊂ Uj . Construct a
diffeomorphism fj : M →M with compact support in Uj such that fj(xj) = yj (To
do so, cover γj([0, 1]) in Uj with a finite number of charts and apply the technique
of 1.).
Then f = fk ◦ · · · ◦ f1 is a diffeomorphism of M which sends (x1, . . . , xk) to
(y1, . . . , yk).

• If dimM = 1.
The intermediate value Theorem is an obstruction to the k transitivity, as shows
the two following figures.

−1 0 1 impossible

if f is C0
f(−1)f(1)f(0)

Figure 1: Diff(R) y R is not 3-transitive
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impossible

if f is C0
f(i)

f(−1)

f(1)

f(−i)

Figure 2: Diff(S1) y S1 is not 4-transitive
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