M1 — Advanced Geometry 2021-2022: TD 6

Vector fields, derivations, tangent distributions,

Frobenius Theorem

Exercise 1.

Fix f € C*°(M). Then
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It follows from Leibniz rule that
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Reordering the sum now yields

and similarly,
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By Schwarz’s Theorem, 57— = 57—, and the last term is zero. Hence
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The result follows.

Exercise 2.

1. Let f € C>°(M). Then for any vector field Y, [X, fY] = 0. Developping this last

equality, it follows that
VY eI(TM), (X-fH)Y +f[X,Y]=0
Since [X,Y] =0, it follows that
VY € I(TM), (X-f)Y =

Fix p € M and let Y be a vector field such that Y(p) # 0
(X - NY) () = (X - f)(p) x Y(p) = 0, and thus, (X - f)(p) = 0.

identically vanishes.

It follows that
Therefore, X - f



2. From 1., X acts on C*°(M) as the zero derivation. From the identification between
vector fields and derivations, it follows that X = 0.

Exercise 3.

Watch out: in the papersheet, "X f = 0" has to be understood as Vp € M, X(p) €
kerdf(p). Of course, since f has range in N, X f is not a function with range in R but in
TN.

1. Let X and Y be vector fields in K(f). Then Xf = Y f = 0, and it follows that
X(Yf)=0and Y(Xf)=0. Therefore

(X, Y]f=X(Yf)-Y(Xf)=0-0=0
and [X,Y] € K(f).
2. For ¢ € M, consider
Ke(f) ={X(q) | X € K(f)} € TyM
which is clearly a vector subspace of T, M. Let S, = f~1({f(p)}) be a level set of f.
Since f is a submersion, S is a (dim M —dim N) = (m —n) dimensional submanifold
of M and moreover, for all ¢ € Sy, T,(S,) = kerdf(q). It follows that
Vg€ Sy, Ko(f) C To(Sp)

Let us show the converse inclusion. From the constant rank Theorem, there exists
charts ¢ and 1) around p and f(p) respectively such that

Yo fop izt ..., a™) =z ... 2"

and the level sets of f are locally given in these coordinates by (z',...,2") =
(c1,...,¢n). The vectors fields (%)je{nJrlw,m} are thus in the kernel of df at each

point of the coordinate patch. Multiplying them by a suitable bump function leads
to m — n vector fields of ICq(f) that are linearly independent at ¢, and hence K,(f)
has dimension > m — n. It follows that Ky(f) = T,(Sp). Finally, S, are m —n
dimensional submanifolds tangent to K(f), a m — n dimensional distribution. They
are thus integral submanifold of that distribution.

Exercise 4.

1. In the canonical basis can = {eq, e2} of T,R? = R?, the matrix matcan{X (p), Y (p)} =

1 0
0 1| has rank two. The result follows.
—y(p) O
2. Recall that [a%v )= [8%, %] = 0 and that the Lie bracket is alternating. Therefore,
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X,V]=-1vV,X]=-[2, 2 =12 441 L 42
0 0 0 0 0
—04‘(87/ y)&*'y[afyv&] =9

It follows that [X,Y] ¢ Span{X,Y}, and the distribution Span{X,Y} is not stable
under the Lie bracket. It is then non-integrable by Frobenius Theorem.



3. Let (¢s) and (1)) be the flows of X and Y respectively. By straightforward compu-
tations, we have

QOS(I', Y, Z) = (:E + $Y, —yS)
77Z1t(337 Y, Z) = (.CU, Y + S, Z)
Write D = Span{X,Y} be the distribution spanned by X and Y. Suppose by

contradiction that D is integrable and let Sy be the integral submanifold of D passing
through (0,0,0). Then TSy = Dy = Span{X(0),Y (0)} = Span{(1,0,0); (0,1,0)}.

Since X and Y lie in D, the integral curves of X and Y that crosses Sy stay in Sy,
and thus, for any a,b,c,d € R,
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By 2., we have

Ya © ¢p 0 Y 0 94(0,0,0) = 1hq 0 pp 0 Ye(d, 0,0)
= 1 0 ¢p(d, c,0)
= o (d + b, c, —cb)
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Therefore, the path

o(t) = Y_1op_r oth 0(0,0,0) = (0,0,t%)

lies in Sp. Unluckily, its derivative at zero vanishes and ¢ does not lead to a contra-
diction. Here is the trick: consider

Vt >0, ~(t)=o(Vt)=(0,0,1)

Then 7 is smooth on R, and 7/(0) = (0,0, 1), and 7/(0) ¢ Span{X(0),Y (0)}, which
is a contradiction.

Remarks. (a) If you don’t like considering smooth paths on R, and rather want
it to be defined on neighbourhood of the origin, consider

which is smooth and does the job.

(b) The trick we used is in fact a particular case of the following general statement:
let X and Y be two vector fields on M and ¢, " be their flows. Then

d
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meaning that [X, Y] measures the failure of the path "following X, then Y, then
—X, then —Y" to return to its starting point. Choosing t instead of v/¢ in this
path forces to differentiate one more time to recover (twice) the Lie bracket:
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Exercise 5.

Consider the two following vector fields X = z% + ya% and Y = 1:8% — ya% on R2.
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1. By the formula of Exercise 1. with X! =z, X2 =y, Y! = —y and Y? = z, we find
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Let p = (1,0). Then det(X(p),Y(p)) = det (%, 8%) = 1, and in a neighbourhood
of p, {X,Y} are pointwisely linearly independant. Since [X,Y] = 0, from Frobenius
Theorem, there exists a neighbourhood of p on which X and Y are tangent to co-

ordinates, that is there exists local coordinates (s,t) near p such that X = % and
_ 0
Y =5
2. Let v: 0 € I — R be a smooth curve, and write v = (z,y) and 7' = x’% + y’a%.
Then
0 0 0 0
I X Py L =l oy —
¥ (v) = 5 TV 3 o Yoy
¥ =z,
/
y =Y

It follows that the flow of X is given by

Vs € R,Y(z,y) € R?, o (z,y) = e(z,y)

Y =Y(y) = {z = @: <(1) _01> @

Solving this last differential equation shows that the flow of Y is given by

Similarly,

Vt € R,Y(x,y) € R, @) (z,y) = ((cost)x + (sint)y, —(sint)z + (cost)y)

3. Consider the map
d: (s5,t) € R? 1 X ogpz/((l,())) € R?

Explicitly, it is given by
®(s,t) = (e°cost, —e sint)
By the inverse function Theorem, ® is a local diffeomorphism from a neighbourhood of

(0,0) to a neighbourhood of (1,0), and by construction, the tangent vector fields to the
coordinates (s,t) are X and Y.



