Algorithme de Berlekemp, extension monogène, clôture algébrique.

Exercice 1.

Soit \mathbb{F}_q un corps fini et $P \in \mathbb{F}_q[X]$ un polynôme sans facteur carré.

1. Montrer que l'application

$$\varphi \colon \left| \begin{array}{ccc} \mathbb{F}_q[X]/(P) & \longrightarrow & \mathbb{F}_q[X]/(P) \\ Q(X) \mod P & \longmapsto & Q(X^q) \mod P \end{array} \right|$$

est bien définie et est un morphisme d'anneaux \mathbb{F}_q -linéaire.

- 2. Soit r le nombre de facteurs irréductibles de P. Montrer que $\ker(\varphi \operatorname{Id})$ est un \mathbb{F}_q -espace vectoriel de dimension r.
- 3. On suppose désormais que $r \ge 2$.
 - (a) Montrer qu'il existe $S \in \mathbb{F}_q[X]$ non constant modulo P tel que l'on a l'égalité $P = \prod_{\alpha \in \mathbb{F}_q} \operatorname{pgcd}(P, S \alpha)$.
 - (b) En déduire un algorithme de factorisation en facteurs irréductibles dans $\mathbb{F}_q[X]$.

Exercice 2.

- 1. Soit L/K une extension.
 - (a) On suppose que $L = K[\alpha]$ pour un certain $\alpha \in L$, et soit P le polynôme minimal de α sur K. Montrer qu'on a une application injective naturelle de l'ensemble des sous extensions K' de L/K vers l'ensemble des diviseurs unitaires de P dans L[X].
 - (b) On suppose que K est infini et qu'il n'existe qu'un nombre fini de sous-extensions de L/K. Montrer que si $\alpha, \beta \in L$, alors l'extension $K(\alpha, \beta)$ est monogène. Indice : considérer des extensions de la forme $K[\alpha + t\beta]$. En déduire que L est une extension monogène.
- 2. Soit K un corps de caractéristique p > 0.
 - (a) Montrer que $X^p T \in (K(T))[X]$ est irréductible.
 - (b) Montrer que tout corps de rupture de X^p-T sur K(T) est un corps de décomposition.
- 3. Soit $K = \operatorname{Frac}(\mathbb{F}_p[T,U])$, et L un corps de décomposition de $(X^p T)(X^p U)$.
 - (a) Montrer que $[L:K] = p^2$.
 - (b) Montrer que si $x \in L$, alors $x^p \in K$.
 - (c) En déduire que l'extension L/K n'est pas monogène.

Exercice 3.

Soit Ω un corps algébriquement clos. Soit $K \subset \Omega$ un sous corps. Soit enfin $L = \{x \in \Omega \mid x \text{ est algébrique sur } K\}$. Montrer que L est un corps, et que c'est une clôture algébrique de K.