Groupes de Galois

Exercice 1.

Soit $P = X^5 - 6X + 3 \in \mathbb{Q}[X]$.

- 1. Montrer que P est irréductible.
- 2. Montrer que P possède trois racines réelles et deux racines complexes conjuguées.
- 3. Soit K un corps de décomposition de P, et $G=\mathrm{Gal}(K/\mathbb{Q})$. Montrer que G est isomorphe à \mathfrak{S}_5 .
- 4. En déduire la forme des sous-extensions galoisiennes de K.

Exercice 2.

Soit Ω un corps algébriquement clos de caractéristique nulle, et $K \subset \Omega$ un sous-corps tel que $[\Omega:K]<+\infty$. Le but de cet exercice est de prouver que $\Omega=K(\sqrt{-1})$.

- 1. Montrer que Ω/K est une extension galoisienne. Soit i une racine de X^2+1 dans Ω , et soit $G=\operatorname{Gal}(\Omega/K(i))$. On suppose que G n'est pas trivial. Soit p un diviseur premier de |G|.
- 2. Montrer qu'il existe une sous-extension de corps $K(i) \subset L \subset \Omega$ telle que Ω/L est galoisienne de degré p.
- 3. Montrer qu'il existe $a \in L$ tel que $X^p a$ est irréductible dans L[X] et tel que Ω soit un corps de décomposition de $X^p a$.
- 4. On suppose que $p \neq 2$. Calculer $\prod_{\sigma \in \operatorname{Gal}(\Omega/L)} \sigma(\alpha)$, pour α racine de de $X^p a$.
- 5. Conclure.

Exercice 3.

Soit L/K une extension galoisienne de groupe de Galois G. Soit $x \in L$. Montrer que $K[x] = L^{\operatorname{Stab}(x)}$.

Exercice 4.

Soit L un corps de décomposition de $X^4 - 6 \in \mathbb{Q}[X]$.

- 1. Montrer que $L = \mathbb{Q}(\sqrt[4]{6}, i)$, et calculer $[L : \mathbb{Q}]$.
- 2. Soir $G = \operatorname{Gal}(L/\mathbb{Q})$. Montrer qu'il existe deux éléments $r, s \in G$, tels que

$$r(\sqrt[4]{6}) = i\sqrt[4]{6},$$
 $r(i) = i,$ $s(\sqrt[4]{6}) = \sqrt[4]{6},$ $s(i) = -i,$

et en déduire un isomorphisme $G \simeq D_8$.

3. Expliciter la correspondance de Galois et en déduire parmi les sous-extensions de L lesquelles sont galoisiennes.