ENS Lyon Algèbre 2 Examen partiel

1er mars 2022

Notes de cours autorisées, pas d'autre document.

Exercice 1.— Pour quelles valeurs de l'entier naturel n l'anneau $\mathbb{F}_2[X]/(X^n-1)$ est-il intègre?

Exercice 2.— Un anneau est *artinien* si toute suite décroissante d'idéaux $I_1 \supseteq I_2 \supseteq \dots$ est stationnaire : il existe un entier m tel que $I_m = I_{m+1} = \dots$

- 1. Donner un exemple d'anneau artinien.
- 2. Donner un exemple d'anneau noethérien non artinien.
- 3. Montrer qu'un anneau artinien et intègre est un corps.
- 4. Montrer que si A est artinien et I un idéal de A, alors A/I est artinien.
- 5. Montrer que si A est un anneau artinien, alors tout idéal premier de A est maximal.

Exercice 3.— Soit d un nombre entier positif qui n'est pas un carré. On travaille dans l'anneau $\mathbb{Z}[\sqrt{d}]$.

- 1. Montrer que $\mathbb{Z}[\sqrt{d}]$ est noethérien. On considère l'application $\tau: \mathbb{Z}[\sqrt{d}] \to \mathbb{Z}[\sqrt{d}]$ définie pour $a,b \in \mathbb{Z}$ par $\tau(a+b\sqrt{d})=a-b\sqrt{d}$. On admet que c'est un automorphisme d'anneau. On définit l'application $N_d: \mathbb{Z}[\sqrt{d}] \to \mathbb{N}$ par $N_d(x) = x \cdot \tau(x)$.
- 2. Montrer que N_d vérifie d'une part $N_d(xy) = N_d(x)N_d(y)$, et d'autre part $N_d(x) = 0 \iff x = 0$.
- 3. Montrer qu'un élément $x \in \mathbb{Z}[\sqrt{d}]$ est une unité si et seulement si on a $N_d(x) = \pm 1$. Désormais on se place dans le cas d = 2.
- 4. Montrer que tous les nombres de la forme $(1+\sqrt{2})^n$ sont des unités de $\mathbb{Z}[\sqrt{2}]$.
- 5. Montrer qu'il n'y a aucune unité de $\mathbb{Z}[\sqrt{2}]$ dans l'intervalle réel $]1,1+\sqrt{2}[.$
- 6. En déduire l'ensemble des unités de $\mathbb{Z}[\sqrt{2}]$.

Exercice 4.— Soit p un nombre premier différent de 2. On considère le corps \mathbb{F}_p à p éléments.

- 1. Combien d'éléments de \mathbb{F}_p sont le carré d'un élément de \mathbb{F}_p ? Combien d'éléments de \mathbb{F}_p ne sont pas des carrés?
- 2. Montrer que si x et y ne sont pas des carrés dans \mathbb{F}_p , alors xy est un carré dans \mathbb{F}_p (on pourra considérer l'ensemble des carrés non nuls et en faire un groupe). On fixe désormais un élément d de \mathbb{F}_p qui n'est pas un carré.
- 3. Montrer que le quotient $\mathbb{F}_p[X]/(X^2-d)$ est un corps. Combien a-t-il d'éléments? Pour P(X) un élément dans $\mathbb{F}_p[X]$, on note $\bar{P}(X)$ sa classe dans $\mathbb{F}_p[X]/(X^2-d)$.

- 4. L'élément \bar{X} engendre-t-il le groupe multiplicatif $(\mathbb{F}_p[X]/(X^2-d))^{\times}$?
- 5. Soit a,b,c trois éléments de \mathbb{F}_p avec $a\neq 0$. Donner (en distinguant 3 cas) la solution générale dans $\mathbb{F}_p[X]/(X^2-d)$ de l'équation $ax^2+bx+c=0$ d'inconnue x.

Exercice 5.— Soient m et n deux entiers naturels non nuls premiers entre eux, soit K un corps et a un élément de K. Montrer que les polynômes $X^m - a$ et $X^n - a$ sont tous deux irréductibles dans K[X] si et seulement si le polynôme $X^{mn} - a$ est irréductible dans K[X]. (On pourra travailler dans un corps de rupture de $X^{mn} - a$.)